The Function of Autophagy in the Initiation, and Development of Breast Cancer


Цитировать

Полный текст

Аннотация

Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.

Об авторах

Elmira Beilankouhi

Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz

Email: info@benthamscience.net

Mohammad Valilo

Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences

Email: info@benthamscience.net

Narges Dastmalchi

Department of Biology, University College of Nabi Akram

Email: info@benthamscience.net

Shahram Teimourian

Department of Medical Genetics, School of Medicine, Iran University of Medical Science

Email: info@benthamscience.net

Reza Safaralizadeh

Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Ullah, M.F. Breast cancer: current perspectives on the disease status; Breast Cancer Metastasis and Drug Resistance, 2019, pp. 51-64.
  2. Fattahi, M.; Sheervalilou, R.; Hoseinpour, N.; Valiloo, M.; Pedram, N.; Montazeri, V.; Nejati, K.; Abtin, M.; Seif, F.; Alivand, M-R. The correlation between Twist 1 and 2 promoter methylation status and clinicopathologic characteristics of patients with breast cancer. Gene Rep., 2020, 20, 100741. doi: 10.1016/j.genrep.2020.100741
  3. Maghsoodi, M.S.; Khosroshahi, N.S.; Beilankouhi, E.A.V.; Valilo, M.; Feizi, M.A.H. VEGF-634G > C (rs2010963) gene polymorphism and high risk of breast cancer in the Northwest of Iran. Ind. J. Gynecol. Oncol., 2023, 21(1), 6. doi: 10.1007/s40944-022-00648-7
  4. Cocco, S.; Leone, A.; Piezzo, M.; Caputo, R.; Di Lauro, V.; Di Rella, F.; Fusco, G.; Capozzi, M.; Gioia, G.; Budillon, A.; De Laurentiis, M. Targeting autophagy in breast cancer. Int. J. Mol. Sci., 2020, 21(21), 7836. doi: 10.3390/ijms21217836 PMID: 33105796
  5. Khodabandeh, Z.; Valilo, M.; Velaei, K.; Pirpour Tazehkand, A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer, 2022, 29(5), 778-789. doi: 10.1007/s12282-022-01369-7 PMID: 35583594
  6. Mizushima, N. Autophagy: Process and function. Genes Dev., 2007, 21(22), 2861-2873. doi: 10.1101/gad.1599207 PMID: 18006683
  7. Mizushima, N. The pleiotropic role of autophagy: From protein metabolism to bactericide. Cell Death Differ., 2005, 12(S2)(Suppl. 2), 1535-1541. doi: 10.1038/sj.cdd.4401728 PMID: 16247501
  8. Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466. doi: 10.3390/ijms19113466 PMID: 30400561
  9. Dong, C.; Yuan, T.; Wu, Y.; Wang, Y.; Fan, T.W.M.; Miriyala, S.; Lin, Y.; Yao, J.; Shi, J.; Kang, T.; Lorkiewicz, P.; St Clair, D.; Hung, M.C.; Evers, B.M.; Zhou, B.P. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell, 2013, 23(3), 316-331. doi: 10.1016/j.ccr.2013.01.022 PMID: 23453623
  10. Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141. doi: 10.1038/ncb2152 PMID: 21258367
  11. Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T.P.; Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol., 2008, 10(8), 935-945. doi: 10.1038/ncb1753 PMID: 18604198
  12. Ameisen, J.C. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ., 2002, 9(4), 367-393. doi: 10.1038/sj.cdd.4400950 PMID: 11965491
  13. Debnath, J. The multifaceted roles of autophagy in tumors-implications for breast cancer. J. Mammary Gland Biol. Neoplasia, 2011, 16(3), 173-187. doi: 10.1007/s10911-011-9223-3 PMID: 21779879
  14. Maes, H.; Rubio, N.; Garg, A.D.; Agostinis, P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol. Med., 2013, 19(7), 428-446. doi: 10.1016/j.molmed.2013.04.005 PMID: 23714574
  15. Espina, V.; Wysolmerski, J.; Edmiston, K.; Liotta, L.A. Attacking breast cancer at the preinvasion stage by targeting autophagy. Womens Health, 2013, 9(2), 157-170. doi: 10.2217/WHE.13.5 PMID: 23477322
  16. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 2012, 12(6), 401-410. doi: 10.1038/nrc3262 PMID: 22534666
  17. Vega-Rubín-de-Celis, S.; Zou, Z.; Fernández, Á.F.; Ci, B.; Kim, M.; Xiao, G.; Xie, Y.; Levine, B. Increased autophagy blocks HER2-mediated breast tumorigenesis. Proc. Natl. Acad. Sci. USA, 2018, 115(16), 4176-4181. doi: 10.1073/pnas.1717800115 PMID: 29610308
  18. Ahn, J.S.; Ann, E.J.; Kim, M.Y.; Yoon, J.H.; Lee, H.J.; Jo, E.H.; Lee, K.; Lee, J.S.; Park, H.S. Autophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain. Oncotarget, 2016, 7(48), 79047-79063. doi: 10.18632/oncotarget.12986 PMID: 27806347
  19. Niklaus, N.J.; Tokarchuk, I.; Zbinden, M.; Schläfli, A.M.; Maycotte, P.; Tschan, M.P. The multifaceted functions of autophagy in breast cancer development and treatment. Cells, 2021, 10(6), 1447. doi: 10.3390/cells10061447 PMID: 34207792
  20. Maycotte, P.; Thorburn, A. Targeting autophagy in breast cancer. World J. Clin. Oncol., 2014, 5(3), 224-240. doi: 10.5306/wjco.v5.i3.224 PMID: 25114840
  21. Maiuri, M.C.; Tasdemir, E.; Criollo, A.; Morselli, E.; Vicencio, J.M.; Carnuccio, R.; Kroemer, G. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ., 2009, 16(1), 87-93. doi: 10.1038/cdd.2008.131 PMID: 18806760
  22. Botti, J.; Djavaheri-Mergny, M.; Pilatte, Y.; Codogno, P. Autophagy signaling and the cogwheels of cancer. Autophagy, 2006, 2(2), 67-73. doi: 10.4161/auto.2.2.2458 PMID: 16874041
  23. Lim, K.H.; Staudt, L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a011247. doi: 10.1101/cshperspect.a011247 PMID: 23284045
  24. Salminen, A.; Kaarniranta, K.; Kauppinen, A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: Impact on the aging process. Ageing Res. Rev., 2013, 12(2), 520-534. doi: 10.1016/j.arr.2012.11.004 PMID: 23220384
  25. Rosenfeldt, M.T.; Ryan, K.M. The multiple roles of autophagy in cancer. Carcinogenesis, 2011, 32(7), 955-963. doi: 10.1093/carcin/bgr031 PMID: 21317301
  26. Gewirtz, D.A. The four faces of autophagy: Implications for cancer therapy. Cancer Res., 2014, 74(3), 647-651. doi: 10.1158/0008-5472.CAN-13-2966 PMID: 24459182
  27. Parzych, K.R.; Klionsky, D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473. doi: 10.1089/ars.2013.5371 PMID: 23725295
  28. Martinet, W.; Agostinis, P.; Vanhoecke, B.; Dewaele, M.; de Meyer, G.R.Y. Autophagy in disease: A double-edged sword with therapeutic potential. Clin. Sci., 2009, 116(9), 697-712. doi: 10.1042/CS20080508 PMID: 19323652
  29. Cheong, H.; Lu, C.; Lindsten, T.; Thompson, C.B. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol., 2012, 30(7), 671-678. doi: 10.1038/nbt.2285 PMID: 22781696
  30. Berardi, DE; Campodónico, PB; Díaz Bessone, MI; Urtreger, AJ; Todaro, LB Autophagy: Friend or foe in breast cancer development, progression, and treatment. Int. J. Breast Cancer., 2011, 2011, 595092. doi: 10.4061/2011/595092
  31. Notte, A.; Leclere, L.; Michiels, C. Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem. Pharmacol., 2011, 82(5), 427-434. doi: 10.1016/j.bcp.2011.06.015 PMID: 21704023
  32. Shi, W.; Xiao, D.; Wang, L.; Dong, L.; Yan, Z.; Shen, Z. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell death & disease, 2012, 3(3), e275-e.
  33. Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.O.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435. doi: 10.1152/physrev.00030.2009 PMID: 20959619
  34. Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov., 2012, 11(9), 709-730. doi: 10.1038/nrd3802 PMID: 22935804
  35. Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 931-937. doi: 10.1038/nrm2245 PMID: 17712358
  36. Chang, C.Y.; Huang, W.P. Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol. Biol. Cell, 2007, 18(3), 919-929. doi: 10.1091/mbc.e06-08-0683 PMID: 17192412
  37. He, C.; Baba, M.; Klionsky, D.J. Double duty of Atg9 self-association in autophagosome biogenesis. Autophagy, 2009, 5(3), 385-387. doi: 10.4161/auto.5.3.7699 PMID: 19182520
  38. Autophagosome formation involves cycling of ATG9. Autophagy; Legakis, J.E.; Yen, W-L.; He, C.; Monastyrska, I.; Yorimitsu, T.; Klionsky, D.J., Eds.; Landes Bioscience 810 South Church Street, Georgetown, TX 78626 USA, 2006.
  39. Yen, W.L.; Legakis, J.E.; Nair, U.; Klionsky, D.J. Atg27 is required for autophagy-dependent cycling of Atg9. Mol. Biol. Cell, 2007, 18(2), 581-593. doi: 10.1091/mbc.e06-07-0612 PMID: 17135291
  40. Klionsky, D.J.; Abeliovich, H.; Agostinis, P.; Agrawal, D.K.; Aliev, G.; Askew, D.S.; Baba, M.; Baehrecke, E.H.; Bahr, B.A.; Ballabio, A.; Bamber, B.A.; Bassham, D.C.; Bergamini, E.; Bi, X.; Biard-Piechaczyk, M.; Blum, J.S.; Bredesen, D.E.; Brodsky, J.L.; Brumell, J.H.; Brunk, U.T.; Bursch, W.; Camougrand, N.; Cebollero, E.; Cecconi, F.; Chen, Y.; Chin, L.S.; Choi, A.; Chu, C.T.; Chung, J.; Clark, R.S.B.; Clarke, P.G.H.; Clarke, S.G.; Clavé, C.; Cleveland, J.L.; Codogno, P.; Colombo, M.I.; Coto-Montes, A.; Cregg, J.M.; Cuervo, A.M.; Debnath, J.; Dennis, P.B.; Dennis, P.A.; Demarchi, F.; Deretic, V.; Devenish, R.J.; Di Sano, F.; Dice, J.F.; Distelhorst, C.W.; Dinesh-Kumar, S.P.; Eissa, N.T.; DiFiglia, M.; Djavaheri-Mergny, M.; Dorsey, F.C.; Dröge, W.; Dron, M.; Dunn, W.A., Jr; Duszenko, M.; Elazar, Z.; Esclatine, A.; Eskelinen, E.L.; Fésüs, L.; Finley, K.D.; Fuentes, J.M.; Fueyo-Margareto, J.; Fujisaki, K.; Galliot, B.; Gao, F.B.; Gewirtz, D.A.; Gibson, S.B.; Gohla, A.; Goldberg, A.L.; Gonzalez, R.; González-Estévez, C.; Gorski, S.M.; Gottlieb, R.A.; Häussinger, D.; He, Y.W.; Heidenreich, K.; Hill, J.A.; Høyer-Hansen, M.; Hu, X.; Huang, W.P.; Iwasaki, A.; Jäättelä, M.; Jackson, W.T.; Jiang, X.; Jin, S.V.; Johansen, T.; Jung, J.U.; Kadowaki, M.; Kang, C.; Kelekar, A.; Kessel, D.H.; Kiel, J.A.K.W.; Kim, H.P.; Kimchi, A.; Kinsella, T.J.; Kiselyov, K.; Kitamoto, K.; Knecht, E.; Komatsu, M.; Kominami, E.; Kondo, S.; Kovács, A.L.; Kroemer, G.; Kuan, C.Y.; Kumar, R.; Kundu, M.; Landry, J.; Laporte, M.; Le, W.; Lei, H.Y.; Levine, B.; Lieberman, A.P.; Lim, K-L.; Lin, F-C.; Liou, W.; Liu, L.F.; Lopez-Berestein, G.; López-Otín, C.; Lu, B.; Macleod, K.F.; Malorni, W.; Martinet, W.; Matsuoka, K.; Mautner, J.; Meijer, A.J.; Meléndez, A.; Michels, P.; Miotto, G.; Mistiaen, W.P.; Mizushima, N.; Mograbi, B.; Moore, M.N.; Moreira, P.I.; Moriyasu, Y.; Motyl, T.; Münz, C.; Murphy, L.O.; Naqvi, N.I.; Neufeld, T.P.; Nishino, I.; Nixon, R.A.; Noda, T.; Nürnberg, B.; Ogawa, M.; Oleinick, N.L.; Olsen, L.J.; Ozpolat, B.; Paglin, S.; Palmer, G.E.; Papassideri, I.S.; Parkes, M.; Perlmutter, D.H.; Perry, G.; Piacentini, M.; Pinkas-Kramarski, R.; Prescott, M.; Proikas-Cezanne, T.; Raben, N.; Rami, A.; Reggiori, F.; Rohrer, B.; Rubinsztein, D.C.; Ryan, K.M.; Sadoshima, J.; Sakagami, H.; Sakai, Y.; Sandri, M.; Sasakawa, C.; Sass, M.; Schneider, C.; Seglen, P.O.; Seleverstov, O.; Settleman, J.; Shacka, J.J.; Shapiro, I.M.; Sibirny, A.A.; Silva-Zacarin, E.C.M.; Simon, H-U.; Simone, C.; Simonsen, A.; Smith, M.A.; Spanel-Borowski, K.; Srinivas, V.; Steeves, M.; Stenmark, H.; Stromhaug, P.E.; Subauste, C.S.; Sugimoto, S.; Sulzer, D.; Suzuki, T.; Swanson, M.S.; Tabas, I.; Takeshita, F.; Talbot, N.J.; Tallóczy, Z.; Tanaka, K.; Tanaka, K.; Tanida, I.; Taylor, G.S.; Taylor, J.P.; Terman, A.; Tettamanti, G.; Thompson, C.B.; Thumm, M.; Tolkovsky, A.M.; Tooze, S.A.; Truant, R.; Tumanovska, L.V.; Uchiyama, Y.; Ueno, T.; Uzcátegui, N.L.; van der Klei, I.J.; Vaquero, E.C.; Vellai, T.; Vogel, M.W.; Wang, H-G.; Webster, P.; Xi, Z.; Xiao, G.; Yahalom, J.; Yang, J-M.; Yap, G.S.; Yin, X-M.; Yoshimori, T.; Yue, Z.; Yuzaki, M.; Zabirnyk, O.; Zheng, X.; Zhu, X.; Deter, R.L.; Zabirnyk, O.; Zheng, X.; Zhu, X.; Deter, R.L. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4(2), 151-175. doi: 10.4161/auto.5338 PMID: 18188003
  41. Le Grand, J.N.; Chakrama, F.Z.; Seguin-Py, S.; Fraichard, A.; Delage-Mourroux, R.; Jouvenot, M.; Boyer-Guittaut, M. GABARAPL1 (GEC1): Original or copycat? Autophagy, 2011, 7(10), 1098-1107. doi: 10.4161/auto.7.10.15904 PMID: 21597319
  42. Behrends, C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Network organization of the human autophagy system. Nature, 2010, 466(7302), 68-76. doi: 10.1038/nature09204 PMID: 20562859
  43. Folkerts, H.; Hilgendorf, S.; Vellenga, E.; Bremer, E.; Wiersma, V.R. The multifaceted role of autophagy in cancer and the microenvironment. Med. Res. Rev., 2019, 39(2), 517-560. doi: 10.1002/med.21531 PMID: 30302772
  44. Yue, Z.; Jin, S.; Yang, C.; Levine, A.J.; Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15077-15082. doi: 10.1073/pnas.2436255100 PMID: 14657337
  45. Eccles, D.M.; Russell, S.E.; Haites, N.E.; Atkinson, R.; Bell, D.W.; Gruber, L.; Hickey, I.; Kelly, K.; Kitchener, H.; Leonard, R. Early loss of heterozygosity on 17q in ovarian cancer. The Abe Ovarian Cancer Genetics Group Oncogene, 1992, 7(10), 2069-2072. PMID: 1408149
  46. Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Aghanejad, A.; Zhang, Y.; Ren, J. Mitophagy receptors and mediators: therapeutic targets in the management of cardiovascular ageing. Ageing Res. Rev., 2020, 62, 101129. doi: 10.1016/j.arr.2020.101129 PMID: 32711157
  47. Ajoolabady, A.; Aghanejad, A.; Bi, Y.; Zhang, Y.; Aslkhodapasandhukmabad, H.; Abhari, A.; Ren, J. Enzyme-based autophagy in anti-neoplastic management: From molecular mechanisms to clinical therapeutics. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(1), 188366. doi: 10.1016/j.bbcan.2020.188366 PMID: 32339608
  48. Tang, Y; Wang, Y; Wang, C; Yu, M; Li, L; Chen, S Isoliquiritigenin attenuates LPS-induced acute kidney injury through suppression of HMGB1 pathway in renal tubular against ferritinophagy. Preprint, 2020. doi: 10.21203/rs.2.24196/v1
  49. Gatica, D.; Chiong, M.; Lavandero, S.; Klionsky, D.J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res., 2015, 116(3), 456-467. doi: 10.1161/CIRCRESAHA.114.303788 PMID: 25634969
  50. He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43(1), 67-93. doi: 10.1146/annurev-genet-102808-114910 PMID: 19653858
  51. Rostami, N.; Nikkhoo, A.; Ajjoolabady, A.; Azizi, G.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Yousefi, B.; Yousefi, M.; Jadidi-Niaragh, F. S1PR1 as a novel promising therapeutic target in cancer therapy. Mol. Diagn. Ther., 2019, 23(4), 467-487. doi: 10.1007/s40291-019-00401-5 PMID: 31115798
  52. Alizadeh, L.; Zarebkohan, A.; Salehi, R.; Ajjoolabady, A.; Rahmati-Yamchi, M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J. Drug Target., 2019, 27(8), 839-852. doi: 10.1080/1061186X.2018.1564923 PMID: 30596291
  53. Hashemi, V.; Farhadi, S.; Ghasemi Chaleshtari, M.; Seashore-Ludlow, B.; Masjedi, A.; Hojjat-Farsangi, M.; Namdar, A.; Ajjoolabady, A.; Mohammadi, H.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int. Immunopharmacol., 2020, 83, 106446. doi: 10.1016/j.intimp.2020.106446 PMID: 32244048
  54. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global cancer observatory: Cancer today. Int. Agency Res. Cancer., 2018, 3(20)
  55. Prat, A.; Perou, C.M. Deconstructing the molecular portraits of breast cancer. Mol. Oncol., 2011, 5(1), 5-23. doi: 10.1016/j.molonc.2010.11.003 PMID: 21147047
  56. Bigaard, J.; Stahlberg, C.; Jensen, M.B.; Ewertz, M.; Kroman, N. Breast cancer incidence by estrogen receptor status in Denmark from 1996 to 2007. Breast Cancer Res. Treat., 2012, 136(2), 559-564. doi: 10.1007/s10549-012-2269-0 PMID: 23053655
  57. Britt, K.L.; Cuzick, J.; Phillips, K.A. Key steps for effective breast cancer prevention. Nat. Rev. Cancer, 2020, 20(8), 417-436. doi: 10.1038/s41568-020-0266-x PMID: 32528185
  58. Joshi, H.; Press, M.F. Molecular oncology of breast cancer. In: The Breast; Elsevier, 2018; pp. 282-307. doi: 10.1016/B978-0-323-35955-9.00022-2
  59. Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; Cameron, D.; Dowsett, M.; Barrios, C.H.; Steger, G.; Huang, C.-S.; Andersson, M.; Inbar, M.; Lichinitser, M.; Láng, I.; Nitz, U.; Iwata, H.; Thomssen, C.; Lohrisch, C.; Suter, T.M.; Rüschoff, J.; Suto, T.; Greatorex, V.; Ward, C.; Straehle, C.; McFadden, E.; Dolci, M.S.; Gelber, R.D.; Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1659-1672. doi: 10.1056/NEJMoa052306 PMID: 16236737
  60. Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet, 2017, 389(10087), 2430-2442. doi: 10.1016/S0140-6736(16)32454-0 PMID: 27939063
  61. Hinck, L.; Näthke, I. Changes in cell and tissue organization in cancer of the breast and colon. Curr. Opin. Cell Biol., 2014, 26, 87-95. doi: 10.1016/j.ceb.2013.11.003 PMID: 24529250
  62. Nielsen, T.O.; Hsu, F.D.; Jensen, K.; Cheang, M.; Karaca, G.; Hu, Z.; Hernandez-Boussard, T.; Livasy, C.; Cowan, D.; Dressler, L.; Akslen, L.A.; Ragaz, J.; Gown, A.M.; Gilks, C.B.; van de Rijn, M.; Perou, C.M. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res., 2004, 10(16), 5367-5374. doi: 10.1158/1078-0432.CCR-04-0220 PMID: 15328174
  63. Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.A.D.A.A.; Balakrishnan, V. Triple negative breast cancer: A review of present and future diagnostic modalities. Medicina, 2021, 57(1), 62. doi: 10.3390/medicina57010062 PMID: 33445543
  64. Rakha, E.A.; Elsheikh, S.E.; Aleskandarany, M.A.; Habashi, H.O.; Green, A.R.; Powe, D.G.; El-Sayed, M.E.; Benhasouna, A.; Brunet, J.S.; Akslen, L.A.; Evans, A.J.; Blamey, R.; Reis-Filho, J.S.; Foulkes, W.D.; Ellis, I.O. Triple-negative breast cancer: Distinguishing between basal and nonbasal subtypes. Clin. Cancer Res., 2009, 15(7), 2302-2310. doi: 10.1158/1078-0432.CCR-08-2132 PMID: 19318481
  65. Nounou, MI; ElAmrawy, F; Ahmed, N; Abdelraouf, K; Goda, S; Syed-Sha-Qhattal, H Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast cancer: Basic and clinical research, 2015, 9, S29420. doi: 10.4137/BCBCR.S29420
  66. Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; Backlund, M.G.; Yin, Y.; Khramtsov, A.I.; Bastein, R.; Quackenbush, J.; Glazer, R.I.; Brown, P.H.; Green, J.E.; Kopelovich, L.; Furth, P.A.; Palazzo, J.P.; Olopade, O.I.; Bernard, P.S.; Churchill, G.A.; Van Dyke, T.; Perou, C.M. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol., 2007, 8(5), R76. doi: 10.1186/gb-2007-8-5-r76 PMID: 17493263
  67. Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68. doi: 10.1186/bcr2635 PMID: 20813035
  68. Hennessy, B.T.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Gilcrease, M.Z.; Krishnamurthy, S.; Lee, J.S.; Fridlyand, J.; Sahin, A.; Agarwal, R.; Joy, C.; Liu, W.; Stivers, D.; Baggerly, K.; Carey, M.; Lluch, A.; Monteagudo, C.; He, X.; Weigman, V.; Fan, C.; Palazzo, J.; Hortobagyi, G.N.; Nolden, L.K.; Wang, N.J.; Valero, V.; Gray, J.W.; Perou, C.M.; Mills, G.B. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res., 2009, 69(10), 4116-4124. doi: 10.1158/0008-5472.CAN-08-3441 PMID: 19435916
  69. Creighton, C.J.; Li, X.; Landis, M.; Dixon, J.M.; Neumeister, V.M.; Sjolund, A.; Rimm, D.L.; Wong, H.; Rodriguez, A.; Herschkowitz, J.I.; Fan, C.; Zhang, X.; He, X.; Pavlick, A.; Gutierrez, M.C.; Renshaw, L.; Larionov, A.A.; Faratian, D.; Hilsenbeck, S.G.; Perou, C.M.; Lewis, M.T.; Rosen, J.M.; Chang, J.C. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13820-13825. doi: 10.1073/pnas.0905718106 PMID: 19666588
  70. Schmadeka, R.; Harmon, B.E.; Singh, M. Triple-negative breast carcinoma: Current and emerging concepts. Am. J. Clin. Pathol., 2014, 141(4), 462-477. doi: 10.1309/AJCPQN8GZ8SILKGN PMID: 24619745
  71. Austreid, E.; Lonning, P.E.; Eikesdal, H.P. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin. Pharmacother., 2014, 15(5), 681-700. doi: 10.1517/14656566.2014.885952 PMID: 24579888
  72. DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451. doi: 10.3322/caac.21583 PMID: 31577379
  73. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  74. White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46. doi: 10.1172/JCI73941 PMID: 25654549
  75. Mathew, R.; Khor, S.; Hackett, S.R.; Rabinowitz, J.D.; Perlman, D.H.; White, E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell, 2014, 55(6), 916-930. doi: 10.1016/j.molcel.2014.07.019 PMID: 25175026
  76. Karsli-Uzunbas, G.; Guo, J.Y.; Price, S.; Teng, X.; Laddha, S.V.; Khor, S.; Kalaany, N.Y.; Jacks, T.; Chan, C.S.; Rabinowitz, J.D.; White, E. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov., 2014, 4(8), 914-927. doi: 10.1158/2159-8290.CD-14-0363 PMID: 24875857
  77. Sun, R.; Shen, S.; Zhang, Y.J.; Xu, C.F.; Cao, Z.T.; Wen, L.P.; Wang, J. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55. doi: 10.1016/j.biomaterials.2016.06.038 PMID: 27376558
  78. Autophagosome formation—the role of ULK1 and Beclin1–PI3KC3 complexes in setting the stage. Seminars in cancer biology; Wirth, M.; Joachim, J.; Tooze, S.A., Eds.; Elsevier, 2013.
  79. Zhang, L.; Fu, L.; Zhang, S.; Zhang, J.; Zhao, Y.; Zheng, Y.; He, G.; Yang, S.; Ouyang, L.; Liu, B. Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo. Chem. Sci., 2017, 8(4), 2687-2701. doi: 10.1039/C6SC05368H PMID: 28553505
  80. Jain, M.V.; Paczulla, A.M.; Klonisch, T.; Dimgba, F.N.; Rao, S.B.; Roberg, K.; Schweizer, F.; Lengerke, C.; Davoodpour, P.; Palicharla, V.R.; Maddika, S.; Łos, M. Interconnections between apoptotic, autophagic and necrotic pathways: Implications for cancer therapy development. J. Cell. Mol. Med., 2013, 17(1), 12-29. doi: 10.1111/jcmm.12001 PMID: 23301705
  81. Zarzynska, JM The importance of autophagy regulation in breast cancer development and treatment. BioMed Res. Int., 2014, 2014 doi: 10.1155/2014/710345
  82. Gentile, M.; Ahnström, M.; Schön, F.; Wingren, S. Candidate tumour suppressor genes at 11q23–q24 in breast cancer: Evidence of alterations in PIG8, a gene involved in p53-induced apoptosis. Oncogene, 2001, 20(53), 7753-7760. doi: 10.1038/sj.onc.1204993 PMID: 11753653
  83. Tian, Y.; Li, Z.; Hu, W.; Ren, H.; Tian, E.; Zhao, Y.; Lu, Q.; Huang, X.; Yang, P.; Li, X.; Wang, X.; Kovács, A.L.; Yu, L.; Zhang, H. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell, 2010, 141(6), 1042-1055. doi: 10.1016/j.cell.2010.04.034 PMID: 20550938
  84. Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci., 2019, 134, 116-137. doi: 10.1016/j.ejps.2019.04.011 PMID: 30981885
  85. Bao, J.; Shi, Y.; Tao, M.; Liu, N.; Zhuang, S.; Yuan, W. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clin. Sci., 2018, 132(21), 2299-2322. doi: 10.1042/CS20180563 PMID: 30293967
  86. Del Bel, M.; Abela, A.R.; Ng, J.D.; Guerrero, C.A. Enantioselective chemical syntheses of the furanosteroids (−)-viridin and (−)-viridiol. J. Am. Chem. Soc., 2017, 139(20), 6819-6822. doi: 10.1021/jacs.7b02829 PMID: 28463562
  87. Mauvezin, C.; Neufeld, T.P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 2015, 11(8), 1437-1438. doi: 10.1080/15548627.2015.1066957 PMID: 26156798
  88. Jiang, P.D.; Zhao, Y.L.; Deng, X.Q.; Mao, Y.Q.; Shi, W.; Tang, Q.Q.; Li, Z.G.; Zheng, Y.Z.; Yang, S.Y.; Wei, Y.Q. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed. Pharmacother., 2010, 64(9), 609-614. doi: 10.1016/j.biopha.2010.06.004 PMID: 20888174
  89. Rodenhiser, D.I.; Andrews, J.D.; Vandenberg, T.A.; Chambers, A.F. Gene signatures of breast cancer progression and metastasis. Breast Cancer Res., 2011, 13(1), 201. doi: 10.1186/bcr2791 PMID: 21345283
  90. Won, K.Y.; Kim, G.Y.; Kim, Y.W.; Song, J.Y.; Lim, S.J. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer. Hum. Pathol., 2010, 41(1), 107-112. doi: 10.1016/j.humpath.2009.07.006 PMID: 19762066
  91. Mauthe, M.; Langereis, M.; Jung, J.; Zhou, X.; Jones, A.; Omta, W.; Tooze, S.A.; Stork, B.; Paludan, S.R.; Ahola, T.; Egan, D.; Behrends, C.; Mokry, M.; de Haan, C.; van Kuppeveld, F.; Reggiori, F. An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. J. Cell Biol., 2016, 214(5), 619-635. doi: 10.1083/jcb.201602046 PMID: 27573464
  92. Florey, O.; Gammoh, N.; Kim, S.E.; Jiang, X.; Overholtzer, M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy, 2015, 11(1), 88-99. doi: 10.4161/15548627.2014.984277 PMID: 25484071
  93. Yang, W.; Jiang, C.; Xia, W.; Ju, H.; Jin, S.; Liu, S.; Zhang, L.; Ren, G.; Ma, H.; Ruan, M.; Hu, J. Blocking autophagy flux promotes interferon-alpha-mediated apoptosis in head and neck squamous cell carcinoma. Cancer Lett., 2019, 451, 34-47. doi: 10.1016/j.canlet.2019.02.052 PMID: 30862487
  94. Kadkhoda, J.; Tarighatnia, A.; Tohidkia, M.R.; Nader, N.D.; Aghanejad, A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sci., 2022, 298, 120499. doi: 10.1016/j.lfs.2022.120499 PMID: 35346674
  95. Tooze, S.A.; Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol., 2010, 12(9), 831-835. doi: 10.1038/ncb0910-831 PMID: 20811355
  96. Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol. Pharm. Bull., 2007, 30(5), 859-864. doi: 10.1248/bpb.30.859 PMID: 17473426
  97. Tanida, I.; Ueno, T.; Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 2004, 36(12), 2503-2518. doi: 10.1016/j.biocel.2004.05.009 PMID: 15325588
  98. Bincoletto, C.; Bechara, A.; Pereira, G.J.S.; Santos, C.P.; Antunes, F.; Peixoto da-Silva, J.; Muler, M.; Gigli, R.D.; Monteforte, P.T.; Hirata, H.; Jurkiewicz, A.; Smaili, S.S. Interplay between apoptosis and autophagy, a challenging puzzle: New perspectives on antitumor chemotherapies. Chem. Biol. Interact., 2013, 206(2), 279-288. doi: 10.1016/j.cbi.2013.09.018 PMID: 24121004
  99. An, J.; Zhou, Q.; Wu, M.; Wang, L.; Zhong, Y.; Feng, J.; Shang, Y.; Chen, Y. Interactions between oxidative stress, autophagy and apoptosis in A549 cells treated with aged black carbon. Toxicol. In Vitro, 2019, 54, 67-74. doi: 10.1016/j.tiv.2018.09.008 PMID: 30240709
  100. Bauvy, C.; Gane, P.; Arico, S.; Codogno, P.; Ogier-Denis, E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp. Cell Res., 2001, 268(2), 139-149. doi: 10.1006/excr.2001.5285 PMID: 11478840
  101. Lockshin, R.A.; Zakeri, Z. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 2004, 36(12), 2405-2419. doi: 10.1016/j.biocel.2004.04.011 PMID: 15325581
  102. Esteve, J.M.; Knecht, E. Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells. World J. Biol. Chem., 2011, 2(10), 232-238. doi: 10.4331/wjbc.v2.i10.232 PMID: 22031846
  103. Sivridis, E.; Koukourakis, M.I.; Zois, C.E.; Ledaki, I.; Ferguson, D.J.P.; Harris, A.L.; Gatter, K.C.; Giatromanolaki, A. LC3A-positive light microscopy detected patterns of autophagy and prognosis in operable breast carcinomas. Am. J. Pathol., 2010, 176(5), 2477-2489. doi: 10.2353/ajpath.2010.090049 PMID: 20382705
  104. Yang, Y.; Hu, L.; Zheng, H.; Mao, C.; Hu, W.; Xiong, K.; Wang, F.; Liu, C. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin., 2013, 34(5), 625-635. doi: 10.1038/aps.2013.5 PMID: 23524572
  105. Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res., 2011, 17(4), 654-666. doi: 10.1158/1078-0432.CCR-10-2634 PMID: 21325294
  106. Shacka, J.J.; Klocke, B.J.; Roth, K.A. Autophagy, bafilomycin and cell death: the "a-B-cs" of plecomacrolide-induced neuroprotection. Autophagy, 2006, 2(3), 228-230. doi: 10.4161/auto.2703 PMID: 16874105
  107. Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther., 2011, 10(9), 1533-1541. doi: 10.1158/1535-7163.MCT-11-0047 PMID: 21878654
  108. Wang, C.; Hu, Q.; Shen, H.M. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharmacol. Res., 2016, 105, 164-175. doi: 10.1016/j.phrs.2016.01.028 PMID: 26826398
  109. Kinsey, C.G.; Camolotto, S.A.; Boespflug, A.M.; Guillen, K.P.; Foth, M.; Truong, A.; Schuman, S.S.; Shea, J.E.; Seipp, M.T.; Yap, J.T.; Burrell, L.D.; Lum, D.H.; Whisenant, J.R.; Gilcrease, G.W., III; Cavalieri, C.C.; Rehbein, K.M.; Cutler, S.L.; Affolter, K.E.; Welm, A.L.; Welm, B.E.; Scaife, C.L.; Snyder, E.L.; McMahon, M. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med., 2019, 25(4), 620-627. doi: 10.1038/s41591-019-0367-9 PMID: 30833748
  110. Levy, J.M.M.; Thompson, J.C.; Griesinger, A.M.; Amani, V.; Donson, A.M.; Birks, D.K.; Morgan, M.J.; Mirsky, D.M.; Handler, M.H.; Foreman, N.K.; Thorburn, A. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov., 2014, 4(7), 773-780. doi: 10.1158/2159-8290.CD-14-0049 PMID: 24823863
  111. Mulcahy Levy, J.M.; Zahedi, S.; Griesinger, A.M.; Morin, A.; Davies, K.D.; Aisner, D.L.; Kleinschmidt-DeMasters, B.K.; Fitzwalter, B.E.; Goodall, M.L.; Thorburn, J.; Amani, V.; Donson, A.M.; Birks, D.K.; Mirsky, D.M.; Hankinson, T.C.; Handler, M.H.; Green, A.L.; Vibhakar, R.; Foreman, N.K.; Thorburn, A. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife, 2017, 6, e19671. doi: 10.7554/eLife.19671 PMID: 28094001
  112. Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542. doi: 10.1038/nrc.2017.53 PMID: 28751651
  113. Hale, A.; Ledbetter, D.; Gawriluk, T.; Rucker, E.B., III Altering autophagy: mouse models of human disease; Autophagy-A Double-Edged Sword-Cell Survival or Death, 2013, pp. 121-138.
  114. Zhou, Y.; Rucker, E.B., III; Zhou, B.P. Autophagy regulation in the development and treatment of breast cancer. Acta Biochim. Biophys. Sin., 2016, 48(1), 60-74. doi: 10.1093/abbs/gmv119 PMID: 26637829
  115. Chen, X.; Yu, X.; Chen, J.; Yang, Z.; Shao, Z.; Zhang, Z.; Guo, X.; Feng, Y. Radiotherapy can improve the disease-free survival rate in triple-negative breast cancer patients with T1-T2 disease and one to three positive lymph nodes after mastectomy. Oncologist, 2013, 18(2), 141-147. doi: 10.1634/theoncologist.2012-0233 PMID: 23335622
  116. Perou, C.M. Molecular stratification of triple-negative breast cancers. Oncologist, 2011, 16(S1)(Suppl. 1), 61-70. doi: 10.1634/theoncologist.2011-S1-61 PMID: 21278442
  117. Thomas, S.; Sharma, N.; Golden, E.B.; Cho, H.; Agarwal, P.; Gaffney, K.J.; Petasis, N.A.; Chen, T.C.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Lett., 2012, 325(1), 63-71. doi: 10.1016/j.canlet.2012.05.030 PMID: 22664238
  118. Milani, M.; Rzymski, T.; Mellor, H.R.; Pike, L.; Bottini, A.; Generali, D.; Harris, A.L. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res., 2009, 69(10), 4415-4423. doi: 10.1158/0008-5472.CAN-08-2839 PMID: 19417138
  119. Rao, R.; Balusu, R.; Fiskus, W.; Mudunuru, U.; Venkannagari, S.; Chauhan, L.; Smith, J.E.; Hembruff, S.L.; Ha, K.; Atadja, P.; Bhalla, K.N. Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol. Cancer Ther., 2012, 11(4), 973-983. doi: 10.1158/1535-7163.MCT-11-0979 PMID: 22367781
  120. Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690. doi: 10.1038/nrclinonc.2016.66 PMID: 27184417
  121. Xu, S.W.; Law, B.Y.K.; Qu, S.L.Q.; Hamdoun, S.; Chen, J.; Zhang, W.; Guo, J.R.; Wu, A.G.; Mok, S.W.F.; Zhang, D.W.; Xia, C.; Sugimoto, Y.; Efferth, T.; Liu, L.; Wong, V.K.W. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells. Pharmacol. Res., 2020, 153, 104660. doi: 10.1016/j.phrs.2020.104660 PMID: 31982489
  122. Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 349-364. doi: 10.1038/s41580-018-0003-4 PMID: 29618831
  123. Towers, C.G.; Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine, 2016, 14, 15-23. doi: 10.1016/j.ebiom.2016.10.034 PMID: 28029600
  124. Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Naik, P.P.; Bhutia, S.K. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects. Crit. Rev. Clin. Lab. Sci., 2016, 53(4), 228-252. doi: 10.3109/10408363.2015.1135103 PMID: 26743568
  125. Wong, VK; Li, T; Law, BY; Ma, ED; Yip, N; Michelangeli, F Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell death & disease, 2013, 4(7), e720-e. doi: 10.1038/cddis.2013.217
  126. Laane, E.; Tamm, K.P.; Buentke, E.; Ito, K.; Khahariza, P.; Oscarsson, J.; Corcoran, M.; Björklund, A-C.; Hultenby, K.; Lundin, J.; Heyman, M.; Söderhäll, S.; Mazur, J.; Porwit, A.; Pandolfi, P.P.; Zhivotovsky, B.; Panaretakis, T.; Grandér, D. Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death Differ., 2009, 16(7), 1018-1029. doi: 10.1038/cdd.2009.46 PMID: 19390558
  127. Ouyang, L.; Zhang, L.; Fu, L.; Liu, B. A small-molecule activator induces ULK1-modulating autophagy-associated cell death in triple negative breast cancer. Autophagy, 2017, 13(4), 777-778. doi: 10.1080/15548627.2017.1283470 PMID: 28165887
  128. Negri, T.; Tarantino, E.; Orsenigo, M.; Reid, J.F.; Gariboldi, M.; Zambetti, M.; Pierotti, M.A.; Pilotti, S. Chromosome band 17q21 in breast cancer: Significant association between beclin 1 loss and HER2/NEU amplification. Genes Chromosomes Cancer, 2010, 49(10), 901-909. doi: 10.1002/gcc.20798 PMID: 20589936
  129. Qu, X.; Yu, J.; Bhagat, G.; Furuya, N.; Hibshoosh, H.; Troxel, A.; Rosen, J.; Eskelinen, E.L.; Mizushima, N.; Ohsumi, Y.; Cattoretti, G.; Levine, B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest., 2003, 112(12), 1809-1820. doi: 10.1172/JCI20039 PMID: 14638851
  130. Liu, F.; Lee, J.Y.; Wei, H.; Tanabe, O.; Engel, J.D.; Morrison, S.J.; Guan, J.L. FIP200 is required for the cell-autonomous maintenance of fetal hematopoietic stem cells. Blood, 2010, 116(23), 4806-4814. doi: 10.1182/blood-2010-06-288589 PMID: 20716775
  131. Wei, H.; Wei, S.; Gan, B.; Peng, X.; Zou, W.; Guan, J.L. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev., 2011, 25(14), 1510-1527. doi: 10.1101/gad.2051011 PMID: 21764854
  132. Chen, W.; Bai, Y.; Patel, C.; Geng, F. Autophagy promotes triple negative breast cancer metastasis via YAP nuclear localization. Biochem. Biophys. Res. Commun., 2019, 520(2), 263-268. doi: 10.1016/j.bbrc.2019.09.133 PMID: 31590917
  133. Pavel, M.; Renna, M.; Park, S.J.; Menzies, F.M.; Ricketts, T.; Füllgrabe, J.; Ashkenazi, A.; Frake, R.A.; Lombarte, A.C.; Bento, C.F.; Franze, K.; Rubinsztein, D.C. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat. Commun., 2018, 9(1), 2961. doi: 10.1038/s41467-018-05388-x PMID: 29317637
  134. Shi, Y.; Gong, W.; Lu, L.; Wang, Y.; Ren, J. Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz. J. Med. Biol. Res., 2019, 52(11), e8657. doi: 10.1590/1414-431x20198657 PMID: 31664305
  135. Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Influence of autophagy on the efficacy of radiotherapy. Radiat. Oncol., 2017, 12(1), 57. doi: 10.1186/s13014-017-0795-y PMID: 28320471
  136. Mele, L.; del Vecchio, V.; Liccardo, D.; Prisco, C.; Schwerdtfeger, M.; Robinson, N.; Desiderio, V.; Tirino, V.; Papaccio, G.; La Noce, M. The role of autophagy in resistance to targeted therapies. Cancer Treat. Rev., 2020, 88, 102043. doi: 10.1016/j.ctrv.2020.102043 PMID: 32505806
  137. Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med., 2013, 274(2), 113-126. doi: 10.1111/joim.12084 PMID: 23844915
  138. Cardoso, F.; Costa, A.; Senkus, E.; Aapro, M.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.; Biganzoli, L.; Cardoso, M.J.; Carey, L.; Corneliussen-James, D.; Curigliano, G.; Dieras, V.; El Saghir, N.; Eniu, A.; Fallowfield, L.; Fenech, D.; Francis, P.; Gelmon, K.; Gennari, A.; Harbeck, N.; Hudis, C.; Kaufman, B.; Krop, I.; Mayer, M.; Meijer, H.; Mertz, S.; Ohno, S.; Pagani, O.; Papadopoulos, E.; Peccatori, F.; Penault-Llorca, F.; Piccart, M.J.; Pierga, J.Y.; Rugo, H.; Shockney, L.; Sledge, G.; Swain, S.; Thomssen, C.; Tutt, A.; Vorobiof, D.; Xu, B.; Norton, L.; Winer, E. 3rd ESO–ESMO international consensus guidelines for Advanced Breast Cancer (ABC 3). Breast, 2017, 31, 244-259. doi: 10.1016/j.breast.2016.10.001 PMID: 27927580
  139. Chang, H.; Zou, Z. Targeting autophagy to overcome drug resistance: Further developments. J. Hematol. Oncol., 2020, 13(1), 159. doi: 10.1186/s13045-020-01000-2 PMID: 33239065
  140. de Souza, A.S.C.; Gonçalves, L.B.; Lepique, A.P.; de Araujo-Souza, P.S. The role of autophagy in tumor immunology—complex mechanisms that may Be explored therapeutically. Front. Oncol., 2020, 10, 603661. doi: 10.3389/fonc.2020.603661 PMID: 33335860
  141. Cirone, M.; Gilardini Montani, M.S.; Granato, M.; Garufi, A.; Faggioni, A.; D’Orazi, G. Autophagy manipulation as a strategy for efficient anticancer therapies: Possible consequences. J. Exp. Clin. Cancer Res., 2019, 38(1), 262. doi: 10.1186/s13046-019-1275-z PMID: 31200739
  142. Ladoire, S.; Enot, D.; Andre, F.; Zitvogel, L.; Kroemer, G. Immunogenic cell death-related biomarkers: Impact on the survival of breast cancer patients after adjuvant chemotherapy. OncoImmunology, 2016, 5(2), e1082706. doi: 10.1080/2162402X.2015.1082706 PMID: 27057465
  143. Karamouzis, M.V.; Likaki-Karatza, E.; Ravazoula, P.; Badra, F.A.; Koukouras, D.; Tzorakoleftherakis, E.; Papavassiliou, A.G.; Kalofonos, H.P. Non-palpable breast carcinomas: Correlation of mammographically detected malignant-appearing microcalcifications and molecular prognostic factors. Int. J. Cancer, 2002, 102(1), 86-90. doi: 10.1002/ijc.10654 PMID: 12353238
  144. Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676. doi: 10.1038/45257 PMID: 10604474
  145. Lock, R.; Roy, S.; Kenific, C.M.; Su, J.S.; Salas, E.; Ronen, S.M.; Debnath, J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell, 2011, 22(2), 165-178. doi: 10.1091/mbc.e10-06-0500 PMID: 21119005
  146. van Reesema, L.L.S.; Zheleva, V.; Winston, J.S.; Jansen, R.J.; O’Connor, C.F.; Isbell, A.J.; Bian, M.; Qin, R.; Bassett, P.T.; Hinson, V.J.; Dorsch, K.A.; Kirby, B.W.; Van Sciver, R.E.; Tang-Tan, A.M.; Harden, E.A.; Chang, D.Z.; Allen, C.A.; Perry, R.R.; Hoefer, R.A.; Tang, A.H. SIAH and EGFR, two RAS pathway biomarkers, are highly prognostic in locally advanced and metastatic breast cancer. EBioMedicine, 2016, 11, 183-198. doi: 10.1016/j.ebiom.2016.08.014 PMID: 27569656
  147. Gupta, G.K.; Collier, A.L.; Lee, D.; Hoefer, R.A.; Zheleva, V.; Siewertsz van Reesema, L.L.; Tang-Tan, A.M.; Guye, M.L.; Chang, D.Z.; Winston, J.S.; Samli, B.; Jansen, R.J.; Petricoin, E.F.; Goetz, M.P.; Bear, H.D.; Tang, A.H. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers, 2020, 12(9), 2392. doi: 10.3390/cancers12092392 PMID: 32846967
  148. Marsh, T; Kenific, CM; Suresh, D; Gonzalez, H; Shamir, ER; Mei, W Autophagic degradation of NBR1 restricts metastatic outgrowth during mammary tumor progression. Developmental cell, 2020, 52(5), 591-604. doi: 10.1016/j.devcel.2020.01.025
  149. Katsuragi, Y.; Ichimura, Y.; Komatsu, M. Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Curr. Opin. Toxicol., 2016, 1, 54-61. doi: 10.1016/j.cotox.2016.09.005
  150. Jiang, X.; Bao, Y.; Liu, H.; Kou, X.; Zhang, Z.; Sun, F.; Qian, Z.; Lin, Z.; Li, X.; Liu, X.; Jiang, L.; Yang, Y. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene, 2017, 36(50), 6850-6862. doi: 10.1038/onc.2017.295 PMID: 28846113
  151. Thibault, B.; Ramos-Delgado, F.; Guillermet-Guibert, J. Targeting class I-II-III PI3Ks in cancer therapy: Recent advances in tumor biology and preclinical research. Cancers, 2023, 15(3), 784. doi: 10.3390/cancers15030784 PMID: 36765741

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024