Natural Anticancer Agents: Their Therapeutic Potential, Challenges and Promising Outcomes


如何引用文章

全文:

详细

Cancer, the second leading cause of death worldwide, is a major health problem. Chemotherapy, radiation therapy and surgery are current treatments for cancer. Most anticancer drugs have severe toxic effects and are required to be administered in cycles to reduce toxicity and prevent resistance. Plant-based drugs have shown a potential for treatment of cancer, and various plant secondary metabolites have shown promising antitumor activity against several cancer cell lines, such as leukemia, colon cancer, prostate cancer, breast cancer and lung cancer. Vincristine, etoposide, topotecan and paclitaxel, which are of natural origin, are successfully used in clinical practice, and this has generated interest in natural compounds as anticancer agents. Some phytoconstituents like curcumin, piperine, allicin, quercetin and resveratrol have been extensively researched and reviewed. In the current study, we have reviewed several plants like Athyrium hohenackerianum, Aristolochia baetica, Boswellia serrata, Panax ginseng, Berberis vulgaris, Tanacetum parthenium, Glycine max, Combretum fragrans, Persea americana, Raphanus sativus, Camellia sinensis, and Nigella sativa for their source, key phytoconstituents, and anticancer activity along with their toxicity profile. Few phytoconstituents like boswellic acid, sulforaphane and ginsenoside showed excellent anticancer activity compared to standard drugs and are potential clinical candidates.

作者简介

Savita Tauro

Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research

Email: info@benthamscience.net

Bharat Dhokchawle

Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research

Email: info@benthamscience.net

Popat Mohite

Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research

Email: info@benthamscience.net

Deepali Nahar

Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research

Email: info@benthamscience.net

Sahaya Nadar

Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research

Email: info@benthamscience.net

Evans Coutinho

Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Kisling, L.A.; Stiegmann, R.A. Alternative Medicine; StatPearls Publishing: Treasure Island (FL), 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538520/
  2. Bhandariab, M.; Ravipatib Sc, A. Traditional Ayurvedic medicines: Pathway to develop anti-cancer drugs. J. Mol. Pharm. Org. Process Res., 2015, 3(3) doi: 10.4172/2329-9053.1000130
  3. Ayurvedic Treatment of Advanced Cancer - Ayurveda Yogashram. Available from: https://ayurvedayogashram.com/advance-cancer-ayurvedic-treatment/ (accessed 2023-01-10).
  4. Yamakawa, J.; Motoo, Y.; Moriya, J.; Ogawa, M.; Uenishi, H.; Akazawa, S.; Sasagawa, T.; Nishio, M.; Kobayashi, J. Role of Kampo medicine in integrative cancer therapy. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-6. doi: 10.1155/2013/570848 PMID: 23997796
  5. Shimizu, M.; Takayama, S.; Kikuchi, A.; Arita, R.; Ono, R.; Ishizawa, K.; Ishii, T. Kampo medicine treatment for advanced pancreatic cancer: A case series. Front. Nutr., 2021, 8, 702812. doi: 10.3389/fnut.2021.702812 PMID: 34458306
  6. Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J.; Yao, P.; Gao, C.; Wei, J.; Ung, C.O.L.; Wang, S.; Zhong, Z.; Wang, Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med., 2019, 14(1), 48. doi: 10.1186/s13020-019-0270-9 PMID: 31719837
  7. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335. doi: 10.1021/np200906s PMID: 22316239
  8. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  9. Dalmartello, M.; La Vecchia, C.; Bertuccio, P.; Boffetta, P.; Levi, F.; Negri, E.; Malvezzi, M. European cancer mortality predictions for the year 2022 with focus on ovarian cancer. Ann. Oncol., 2022, 33(3), 330-339. doi: 10.1016/j.annonc.2021.12.007 PMID: 35090748
  10. Mathur, P.; Sathishkumar, K.; Chaturvedi, M.; Das, P.; Sudarshan, K.L.; Santhappan, S.; Nallasamy, V.; John, A.; Narasimhan, S.; Roselind, F.S. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob. Oncol., 2020, 6(6), 1063-1075. doi: 10.1200/GO.20.00122 PMID: 32673076
  11. Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev., 2020, 86, 102019. doi: 10.1016/j.ctrv.2020.102019 PMID: 32251926
  12. Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 2021, 26(4), 1109. doi: 10.3390/molecules26041109 PMID: 33669817
  13. Cragg, G.M.; Pezzuto, J.M. Natural Products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl 2)(Suppl. 2), 41-59. doi: 10.1159/000443404 PMID: 26679767
  14. Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11(S5)(Suppl. 5), 87. doi: 10.1186/s12918-017-0464-7 PMID: 28984210
  15. Scaria, B.; Sood, S.; Raad, C.; Khanafer, J.; Jayachandiran, R.; Pupulin, A.; Grewal, S.; Okoko, M.; Arora, M.; Miles, L.; Pandey, S. Natural health products (NHP’s) and natural compounds as therapeutic agents for the treatment of cancer; Mechanisms of anti-cancer activity of natural compounds and overall trends. Int. J. Mol. Sci., 2020, 21(22), 8480. doi: 10.3390/ijms21228480 PMID: 33187200
  16. Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-derived natural products in cancer research: extraction, mechanism of action, and drug formulation. Molecules, 2020, 25(22), 5319. doi: 10.3390/molecules25225319 PMID: 33202681
  17. Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589. doi: 10.3390/ijms18122589 PMID: 29194365
  18. Salehi, B.; Ezzat, S.M.; Tsouh Fokou, P.V.; Albayrak, S.; Vlaisavljevic, S.; Sharifi-Rad, M.; Bhatt, I.D.; Sharifi-Rad, M.; Belwal, T.; Ayatollahi, S.A.; Kobarfard, F.; Ata, A.; Baghalpour, N.; Martorell, M.; Setzer, W.N.; Sharifi-Rad, J. Athyrium plants - Review on phytopharmacy properties. J. Tradit. Complement. Med., 2019, 9(3), 201-205. doi: 10.1016/j.jtcme.2018.09.001 PMID: 31193938
  19. Elasbali, A. M.; Al-Soud, W. A.; Al-Oanzi, Z. H.; Qanash, H.; Alharbi, B.; Binsaleh, N. K.; Alreshidi, M.; Patel, M.; Adnan, M. Cytotoxic activity, cell cycle inhibition, and apoptosis-inducing potential of Athyrium Hohenackerianum (Lady Fern) with its phytochemical profiling. Evid.-based Complement. Altern. Med., 2022, 2022, 1-13. doi: 10.1155/2022/2055773
  20. Pattayil, L.; Balakrishnan-Saraswathi, H.T. In vitro evaluation of apoptotic induction of butyric acid derivatives in colorectal carcinoma cells. Anticancer Res., 2019, 39(7), 3795-3801. doi: 10.21873/anticanres.13528 PMID: 31262906
  21. Kamatou, G. P. P.; Viljoen, A. M. Linalool – a review of a biologically active compound of commercial importance. Nat. Prod. Commun., 2008, 3(7), 1934578X0800300. doi: 10.1177/1934578X0800300727
  22. Pejin, B.; Kojic, V.; Bogdanovic, G. An insight into the cytotoxic activity of phytol at in vitro conditions. Nat. Prod. Res., 2014, 28(22), 2053-2056. doi: 10.1080/14786419.2014.921686 PMID: 24896297
  23. Sundarraj, S.; Thangam, R.; Sreevani, V.; Kaveri, K.; Gunasekaran, P.; Achiraman, S.; Kannan, S. γ-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J. Ethnopharmacol., 2012, 141(3), 803-809. doi: 10.1016/j.jep.2012.03.014 PMID: 22440953
  24. Bourhia, M.; Abdelaziz Shahat, A.; Mohammed Almarfadi, O.; Ali Naser, F.; Mostafa Abdelmageed, W.; Ait Haj Said, A.; El Gueddari, F.; Naamane, A.; Benbacer, L.; Khlil, N. Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the greater casablanca-morocco. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-9. doi: 10.1155/2019/1613457 PMID: 31687035
  25. Lerma-Herrera, M.A.; Beiza-Granados, L.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Navarro-Santos, P.; Herrera-Bucio, R.; Aviña-Verduzco, J.; García-Gutiérrez, H.A. Biological activities of organic extracts of the genus Aristolochia: A review from 2005 to 2021. Molecules, 2022, 27(12), 3937. doi: 10.3390/molecules27123937 PMID: 35745061
  26. Wang, X.; Shi, G.R.; Liu, Y.F.; Li, L.; Chen, R.Y.; Yu, D.Q. Aristolochic acid derivatives from the rhizome of Arisolochia championii. Fitoterapia, 2017, 118, 63-68. doi: 10.1016/j.fitote.2017.01.006 PMID: 28137630
  27. Paizanni Guillén, A.; Santana Michel, F. J. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol, 2018, 29(2), 591-605. doi: 10.21829/fb.16.2018.203
  28. lan, A.A.; Vidyleison, N.C.; Ana, C.S.P.A.; Karina, M.S.H.; Rosy, I.M.A.R.; lan, A.A.; Vidyleison, N.C.; Ana, C.S.P.A.; Karina, M.S.H.; Rosy, I.M.A.R.; Kamilla, M.S.; Juliana, T.M.; Jos, C.M.; Luciana, A.R.S.L.; Jaqueline, M.S.F. Antibacterial and cytotoxic antibacterial potential of ethanol extract and fractions from Aristolochia galeata Mart. ex Zucc. J. Med. Plants Res., 2014, 8(7), 326-330. doi: 10.5897/JMPR2013.5151
  29. Khouchlaa, A.; El Idrissi, A.E.Y.; Bouyahya, A.; Bakri, Y.; Tijane, M. Phytochemical characterization, in vitro antioxidant, cytotoxic, and antibacterial effects of Aristolochia longa L. Biointerface Res. Appl. Chem., 2020, 11(1), 8129-8140. doi: 10.33263/BRIAC111.81298140
  30. Izac, R.R.; Poet, S.E.; Fenical, W.; Van Engen, D.; Clardy, J. The structure of pacifigorgiol, an ichthyotoxic sesquiterpenoid from the pacific gorgonian coral. Tetrahedron Lett., 1982, 23(37), 3743-3746. doi: 10.1016/S0040-4039(00)87695-9
  31. Chaouki, W.; Leger, D.Y.; Eljastimi, J.; Beneytout, J.L.; Hmamouchi, M. Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactum on human breast cancer cell line MCF-7. Pharm. Biol., 2010, 48(3), 269-274. doi: 10.3109/13880200903096588 PMID: 20645812
  32. Bourhia, M.; Laasri, F.E.; Moussa, S.I.; Ullah, R.; Bari, A.; Saeed Ali, S.; Kaoutar, A.; Haj Said, A.A.; El Mzibri, M.; Said, G.; Khlil, N.; Benbacer, L. Phytochemistry, antioxidant activity, antiproliferative effect, and acute toxicity testing of two moroccan Aristolochia species. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-8. doi: 10.1155/2019/9710876 PMID: 31885676
  33. Al-Barham, M.B.; Al-Jaber, H.I.; Al-Qudah, M.A.; Abu Zarga, M.H. New aristolochic acid and other chemical constituents of Aristolochia maurorum growing wild in Jordan. Nat. Prod. Res., 2017, 31(3), 245-252. doi: 10.1080/14786419.2016.1226833 PMID: 27628622
  34. Bourhia, M.; Haj Said, A.A.; Chaanoun, A.; El Gueddari, F.; Naamane, A.; Benbacer, L.; Khlil, N. Phytochemical screening and toxicological study of Aristolochia baetica linn roots: Histopathological and biochemical evidence. J. Toxicol., 2019, 2019, 1-7. doi: 10.1155/2019/8203832 PMID: 30853978
  35. Ali Abdalla, Y.O.; Subramaniam, B.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Naturalproducts for cancer therapy: A review of their mechanism of actions and toxicity in the past decade. J. Trop. Med., 2022, 2022, 1-20. doi: 10.1155/2022/5794350 PMID: 35309872
  36. Kunnumakkara, A.B.; Banik, K.; Bordoloi, D.; Harsha, C.; Sailo, B.L.; Padmavathi, G.; Roy, N.K.; Gupta, S.C.; Aggarwal, B.B. Googling the Guggul (Commiphora and Boswellia) for Prevention of Chronic Diseases. Front. Pharmacol., 2018, 9, 686. doi: 10.3389/fphar.2018.00686 PMID: 30127736
  37. Winterstein, A.; Stein, G. Studies in the saponin series. X. Notice. About the mono-oxy-triterpenic acids. Hoppe Seylers Z. Physiol. Chem., 1932, 208(1-3), 9-25. doi: 10.1515/bchm2.1932.208.1-3.9
  38. Mannino, G.; Occhipinti, A.; Maffei, M. Quantitative determination of 3-O-Acetyl-11-Keto-β Boswellic acid (AKBA) and other boswellic acids in Boswellia sacra Flueck (syn. B. carteri Birdw) and Boswellia serrata Roxb. Molecules, 2016, 21(10), 1329. doi: 10.3390/molecules21101329 PMID: 27782055
  39. Niphadkar, S.S.; Rathod, V.K. Extraction of acetyl 11-keto- β -boswellic acids (AKBA) from Boswellia serrata using ultrasound. Sep. Sci. Technol., 2017, 52(6), 997-1005. doi: 10.1080/01496395.2016.1274326
  40. Sharma, N.; Bhardwaj, V.; Singh, S.; Ali, S.A.; Gupta, D.K.; Paul, S.; Satti, N.K.; Chandra, S.; Verma, M.K. Simultaneous quantification of triterpenoic acids by high performance liquid chromatography method in the extracts of gum resin of Boswellia serrata obtained by different extraction techniques. Chem. Cent. J., 2016, 10(1), 49. doi: 10.1186/s13065-016-0194-8 PMID: 27493682
  41. Niphadkar, S.S.; Bokhale, N.B.; Rathod, V.K. Extraction of acetyl 11-keto- β -boswellic acid (AKBA) from Boswellia serrata plant oleo gum resin using novel three phase partitioning (TPP) technique. J. Appl. Res. Med. Aromat. Plants, 2017, 7, 41-47. doi: 10.1016/j.jarmap.2017.04.007
  42. Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; Kunnumakkara, A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci., 2019, 20(17), 4101. doi: 10.3390/ijms20174101 PMID: 31443458
  43. Iram, F.; Khan, S.A.; Husain, A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed., 2017, 7(6), 513-523. doi: 10.1016/j.apjtb.2017.05.001
  44. Roy, N.K.; Deka, A.; Bordoloi, D.; Mishra, S.; Kumar, A.P.; Sethi, G.; Kunnumakkara, A.B. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett., 2016, 377(1), 74-86. doi: 10.1016/j.canlet.2016.04.017 PMID: 27091399
  45. Jauch, J.; Bergmann, J. An efficient method for the large-scale preparation of 3-O-acetyl-11-oxo-β-boswellic acid and other boswellic acids. Eur. J. Org. Chem., 2003, 2003(24), 4752-4756. doi: 10.1002/ejoc.200300386
  46. Neeta; Dureja, H. Role of boswellic acids in cancer treatment. J. Med. Sci. (Faisalabad, Pak.), 2014, 14(6-8), 261-269. doi: 10.3923/jms.2014.261.269
  47. Gupta, M.; Verma, S.K.; Singh, S.; Trivedi, L.; Rout, P.K.; Vasudev, P.G.; Luqman, S.; Darokar, M.P.; Bhakuni, R.S.; Misra, L. Anti-proliferative and antibacterial activity of oleo-gum-resin of Boswellia serrata extract and its isolate 3-hydroxy-11-keto-β-boswellic acid. J. Herb. Med., 2022, 32, 100546. doi: 10.1016/j.hermed.2022.100546
  48. Jing, Y.; Nakajo, S.; Xia, L.; Nakaya, K.; Fang, Q.; Waxman, S.; Han, R. Boswellic acid acetate induces differentiation and apoptosis in leukemia cell lines. Leuk. Res., 1999, 23(1), 43-50. doi: 10.1016/S0145-2126(98)00096-4 PMID: 9933134
  49. Zimmermann-Klemd, A.M.; Reinhardt, J.K.; Winker, M.; Gründemann, C. Phytotherapy in Integrative oncology—An update of promising treatment options. Molecules, 2022, 27(10), 3209. doi: 10.3390/molecules27103209 PMID: 35630688
  50. Park, Y.S.; Lee, J.H.; Bondar, J.; Harwalkar, J.A.; Safayhi, H.; Golubic, M. Cytotoxic action of acetyl-11-keto-β-boswellic acid (AKBA) on meningioma cells. Planta Med., 2002, 68(5), 397-401. doi: 10.1055/s-2002-32090 PMID: 12058313
  51. Liu, J.J.; Huang, B.; Hooi, S.C. Acetyl-keto- β -boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br. J. Pharmacol., 2006, 148(8), 1099-1107. doi: 10.1038/sj.bjp.0706817 PMID: 16783403
  52. Lv, M.; Shao, S.; Zhang, Q.; Zhuang, X.; Qiao, T. Acetyl-11-keto-β-boswellic acid exerts the anti-cancer effects via cell cycle arrest, apoptosis induction and autophagy suppression in non-small cell lung cancer cells. OncoTargets Ther., 2020, 13, 733-744. doi: 10.2147/OTT.S236346 PMID: 32158225
  53. Li, W.; Liu, J.; Fu, W.; Zheng, X.; Ren, L.; Liu, S.; Wang, J.; Ji, T.; Du, G. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. J. Exp. Clin. Cancer Res., 2018, 37(1), 132. doi: 10.1186/s13046-018-0805-4 PMID: 29970196
  54. Syrovets, T.; Gschwend, J.E.; Büchele, B.; Laumonnier, Y.; Zugmaier, W.; Genze, F.; Simmet, T. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J. Biol. Chem., 2005, 280(7), 6170-6180. doi: 10.1074/jbc.M409477200 PMID: 15576374
  55. Kiefer, D.; Pantuso, T. Panax ginseng. Am. Fam. Physician, 2003, 68(8), 1539-1542. PMID: 14596440
  56. Guo, M.; Shao, S.; Wang, D.; Zhao, D.; Wang, M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct., 2021, 12(2), 494-518. doi: 10.1039/D0FO01896A PMID: 33331377
  57. Zhang, H.; Abid, S.; Ahn, J.C.; Mathiyalagan, R.; Kim, Y.J.; Yang, D.C.; Wang, Y. Characteristics of Panax ginseng Cultivars in Korea and China. Molecules, 2020, 25(11), 2635. doi: 10.3390/molecules25112635 PMID: 32517049
  58. Liu, H.; Lu, X.; Hu, Y.; Fan, X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol. Res., 2020, 161, 105263. doi: 10.1016/j.phrs.2020.105263 PMID: 33127555
  59. Mohanan, P.; Subramaniyam, S.; Mathiyalagan, R.; Yang, D.C. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J. Ginseng Res., 2018, 42(2), 123-132. doi: 10.1016/j.jgr.2017.01.008 PMID: 29719458
  60. Oh, J.; Yoon, H.J.; Jang, J.H.; Kim, D.H.; Surh, Y.J. The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell–like properties through modulation of self-renewal signaling. J. Ginseng Res., 2019, 43(3), 421-430. doi: 10.1016/j.jgr.2018.05.004 PMID: 31308814
  61. Kim, H.; Choi, P.; Kim, T.; Kim, Y.; Song, B.G.; Park, Y.T.; Choi, S.J.; Yoon, C.H.; Lim, W.C.; Ko, H.; Ham, J. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J. Ginseng Res., 2021, 45(1), 134-148. doi: 10.1016/j.jgr.2020.02.005 PMID: 33437165
  62. Kim, Y.J.; Choi, W.I.; Jeon, B.N.; Choi, K.C.; Kim, K.; Kim, T.J.; Ham, J.; Jang, H.J.; Kang, K.S.; Ko, H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology, 2014, 322, 23-33. doi: 10.1016/j.tox.2014.04.002 PMID: 24793912
  63. Kim, Y.J.; Joo, S.C.; Shi, J.; Hu, C.; Quan, S.; Hu, J.; Sukweenadhi, J.; Mohanan, P.; Yang, D.C.; Zhang, D. Metabolic dynamics and physiological adaptation of Panax ginseng during development. Plant Cell Rep., 2018, 37(3), 393-410. doi: 10.1007/s00299-017-2236-7 PMID: 29150823
  64. Bae, E.A.; Han, M.J.; Choo, M.K.; Park, S.Y.; Kim, D.H. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull., 2002, 25(1), 58-63. doi: 10.1248/bpb.25.58 PMID: 11824558
  65. Qi, L.W.; Wang, C.Z.; Du, G.J.; Zhang, Z.Y.; Calway, T.; Yuan, C.S. Metabolism of ginseng and its interactions with drugs. Curr. Drug Metab., 2011, 12(9), 818-822. doi: 10.2174/138920011797470128 PMID: 21619519
  66. Wang, Y.; Wang, B.X.; Liu, T.H.; Minami, M.; Nagata, T.; Ikejima, T. Metabolism of ginsenoside Rg1 by intestinal bacteria. II. Immunological activity of ginsenoside Rg1 and Rh1. Acta Pharmacol. Sin., 2000, 21(9), 792-796. PMID: 11501159
  67. Ramanathan, M.R.; Penzak, S.R. Pharmacokinetic drug interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(4), 545-557. doi: 10.1007/s13318-016-0387-5 PMID: 27864798
  68. Mohammadzadeh, N.; Mehri, S.; Hosseinzadeh, H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran. J. Basic Med. Sci., 2017, 20(5), 538-551. doi: 10.22038/IJBMS.2017.8678 PMID: 28656089
  69. Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: An update review. Phytother. Res., 2016, 30(11), 1745-1764. doi: 10.1002/ptr.5693 PMID: 27528198
  70. Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol., 2018, 9, 557. doi: 10.3389/fphar.2018.00557 PMID: 30186157
  71. Och, A.; Podgórski, R.; Nowak, R. Biological activity of berberine—A summary update. Toxins, 2020, 12(11), 713. doi: 10.3390/toxins12110713 PMID: 33198257
  72. Wang, K.; Zhang, C.; Bao, J.; Jia, X.; Liang, Y.; Wang, X.; Chen, M.; Su, H.; Li, P.; Wan, J.B.; He, C. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 2016, 6(1), 26064. doi: 10.1038/srep26064 PMID: 27263652
  73. Wang, K.; Yu, G.; Lin, J.; Wang, Z.; Lu, Q.; Gu, C.; Yang, T.; Liu, S.; Yang, H. Berberine sensitizes human hepatoma cells to regorafenib via modulating expression of circular RNAs. Front. Pharmacol., 2021, 12, 632201. doi: 10.3389/fphar.2021.632201 PMID: 34220494
  74. Zhu, Y.; Xie, N.; Chai, Y.; Nie, Y.; Liu, K.; Liu, Y.; Yang, Y.; Su, J.; Zhang, C. Apoptosis induction, a sharp edge of berberine to exert anti-cancer effects, focus on breast, lung, and liver cancer. Front. Pharmacol., 2022, 13, 803717. doi: 10.3389/fphar.2022.803717 PMID: 35153781
  75. Zhang, P.; Wang, Q.; Lin, Z.; Yang, P.; Dou, K.; Zhang, R. Berberine inhibits growth of liver cancer cells by suppressing glutamine uptake. OncoTargets Ther., 2020, 12, 11751-11763. doi: 10.2147/OTT.S235667 PMID: 32021249
  76. Liu, C.H.; Tang, W.C.; Sia, P.; Huang, C.C.; Yang, P.M.; Wu, M.H.; Lai, I.L.; Lee, K.H. Berberine inhibits the metastatic ability of prostate cancer cells by suppressing epithelial-to-mesenchymal transition (EMT)-associated genes with predictive and prognostic relevance. Int. J. Med. Sci., 2015, 12(1), 63-71. doi: 10.7150/ijms.9982 PMID: 25552920
  77. Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res., 2008, 22(8), 999-1012. doi: 10.1002/ptr.2399 PMID: 18618524
  78. Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res., 2020, 12, 695-702. doi: 10.2147/CMAR.S242329 PMID: 32099466
  79. Pareek, A.; Suthar, M.; Rathore, G.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev., 2011, 5(9), 103-110. doi: 10.4103/0973-7847.79105 PMID: 22096324
  80. Carlisi, D.; Lauricella, M.; D’Anneo, A.; De Blasio, A.; Celesia, A.; Pratelli, G.; Notaro, A.; Calvaruso, G.; Giuliano, M.; Emanuele, S. Parthenolide andits soluble analogues: Multitasking compounds with antitumor properties. Biomedicines, 2022, 10(2), 514. doi: 10.3390/biomedicines10020514 PMID: 35203723
  81. Sztiller-Sikorska, M.; Czyz, M. Parthenolide as cooperating agent for anti-cancer treatment of various malignancies. Pharmaceuticals, 2020, 13(8), 194. doi: 10.3390/ph13080194 PMID: 32823992
  82. Wu, C.; Chen, F.; Rushing, J.W.; Wang, X.; Kim, H.J.; Huang, G.; Haley-Zitlin, V.; He, G. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines. J. Med. Food, 2006, 9(1), 55-61. doi: 10.1089/jmf.2006.9.55 PMID: 16579729
  83. Marino, S.; Bishop, R.T.; Carrasco, G.; Logan, J.G.; Li, B.; Idris, A.I. Pharmacological inhibition of nfκb reduces prostate cancer related osteoclastogenesis in vitro and osteolysis ex vivo. Calcif. Tissue Int., 2019, 105(2), 193-204. doi: 10.1007/s00223-019-00538-9 PMID: 30929064
  84. Provance, O.K.; Geanes, E.S.; Lui, A.J.; Roy, A.; Holloran, S.M.; Gunewardena, S.; Hagan, C.R.; Weir, S.; Lewis-Wambi, J. Disrupting interferon-alpha and NF-kappaB crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer Lett., 2021, 514, 12-29. doi: 10.1016/j.canlet.2021.05.006 PMID: 34022283
  85. Liu, D.; Han, Y.; Liu, L.; Ren, X.; Zhang, H.; Fan, S.; Qin, T.; Li, L. Parthenolide inhibits the tumor characteristics of renal cell carcinoma. Int. J. Oncol., 2020, 58(1), 100-110. doi: 10.3892/ijo.2020.5148 PMID: 33367934
  86. Ahmad Jan, S.; Shinwari, Z.K.; Faizan, M.; Ijaz, S. Anticancer properties of soybean: An updated review. J. Cancer Prev. Curr. Res., 2022, 13(1), 22-23. doi: 10.15406/jcpcr.2022.13.00481
  87. El-Keiy, M. M.; Radwan, A. M.; Mohamed, T. M. Cytotoxic effect of soybean saponin against colon cancer. J. Biosci. Med., 2019, 7(7), 70-86. doi: 10.4236/jbm.2019.77006
  88. Kusumoningrum, D.A.; Dwira, S. Phytochemical and in vitro cytotoxicity analyses of wild bean ( Glycine soja ) ethanol extract using laryngeal cancer Hep-2 cells. J. Phys. Conf. Ser., 2018, 1073, 032043. doi: 10.1088/1742-6596/1073/3/032043
  89. Amaani, R.; Dwira, S. Phytochemical content an in vitro toxicity of Glycine soja ethanol extract on the A549 Lung cancer line cell. J. Phys. Conf. Ser., 2018, 1073, 032042. doi: 10.1088/1742-6596/1073/3/032042
  90. Wada, K.; Tsuji, M.; Tamura, T.; Konishi, K.; Kawachi, T.; Hori, A.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; Nagata, C. Soy isoflavone intake and stomach cancer risk in Japan: From the Takayama study. Int. J. Cancer, 2015, 137(4), 885-892. doi: 10.1002/ijc.29437 PMID: 25639758
  91. Lee, K.S.; Woo, S.Y.; Lee, M.J.; Kim, H.Y.; Ham, H.; Lee, D.J.; Choi, S.W.; Seo, W.D. Isoflavones and soyasaponins in the germ of Korean soybean Glycine max (L.) Merr. cultivars and their compound-enhanced BMP-2-induced bone formation. Appl. Biol. Chem, 2020, 63, 1-8. doi: 10.3839/jabc.2020.001
  92. Kim, J.M.; Kim, J.S.; Yoo, H.; Choung, M.G.; Sung, M.K. Effects of black soybean Glycine max (L.) Merr. seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J. Agric. Food Chem., 2008, 56(18), 8427-8433. doi: 10.1021/jf801342p PMID: 18710248
  93. Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Chemicalcomposition, antioxidant and biological activities of the essential oil and extract of the seeds of glycine max (soybean) from North Iran. Curr. Microbiol., 2017, 74(4), 522-531. doi: 10.1007/s00284-016-1188-4 PMID: 28255785
  94. Gade, I.S.; Chadeneau, C.; Simo, R.T.; Talla, E.; Atchade, A.D.T.; Seité, P.; Vannier, B.; Laurent, S.; Henoumont, C.; Nwabo Kamdje, A.H.; Muller, J.M. A new phenyl alkyl ester and a new combretin triterpene derivative from Combretum fragrans F. Hoffm (Combretaceae) and antiproliferative activity. Open Chem., 2020, 18(1), 1523-1531. doi: 10.1515/chem-2020-0167
  95. Dawe, A. Phytochemical constituents of combretum loefl. (Combretaceae). Pharm. Crop., 2013, 4(1), 38-59. doi: 10.2174/2210290601304010038
  96. Mbiantcha, M.; Almas, J.; Dawe, A.; Faheem, A.; Sidra, Z. Analgesic, anti-inflammatory and anticancer activities of Combretin A and Combretin B isolated from Combretum fragrans F. Hoffm (Combretaceae) leaves. Inflammopharmacology, 2018, 26(6), 1429-1440. doi: 10.1007/s10787-017-0421-5 PMID: 29159717
  97. de Morais Lima, G.R.; de Sales, I.R.P.; Caldas Filho, M.R.D.; de Jesus, N.Z.T.; de Sousa Falcão, H.; Barbosa-Filho, J.M.; Cabral, A.G.S.; Souto, A.L.; Tavares, J.F.; Batista, L.M. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules, 2012, 17(8), 9142-9206. doi: 10.3390/molecules17089142 PMID: 22858840
  98. Alkhalaf, M.I.; Alansari, W.S.; Ibrahim, E.A.; ELhalwagy, M.E.A. Anti-oxidant, anti-inflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. J. King Saud Univ. Sci., 2019, 31(4), 1358-1362. doi: 10.1016/j.jksus.2018.10.010
  99. Setyawan, H.Y.; Sukardi, S.; Puriwangi, C.A. Phytochemicals properties of avocado seed: A review. IOP Conf. Ser. Earth Environ. Sci., 2021, 733(1), 012090. doi: 10.1088/1755-1315/733/1/012090
  100. Karthikeyan, A.; Rajasulochana, P. A novel method to identify anticancer activity against Hepg2 liver cancer cell line and vero normal cell line of persea americana mill seeds. Annals of RSCB, 2021, 21(1), 17578-17589.
  101. Amoussatou, S. Comparative phytochemical analysis and antimicrobial activity of extracts of seed and leaf of Persea americana Mill. Academia J. Med. Plants, 2020, 8(5), 058-063.
  102. Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In vitro antioxidant and cancer inhibitory activity of a colored avocado seed extract. Int. J. Food Sci., 2019, 2019, 1-7. doi: 10.1155/2019/6509421 PMID: 31179313
  103. Padilla-Camberos, E.; Martínez-Velázquez, M.; Flores-Fernández, J.M.; Villanueva-Rodríguez, S. Acute toxicity and genotoxic activity of avocado seed extract (Persea Americana Mill., c.v. Hass). ScientificWorldJournal, 2013, 2013, 1-4. doi: 10.1155/2013/245828 PMID: 24298206
  104. Ana, M.; Nur, I. Cytotoxic activity of ethanolic extract of Persea Americana mill. leaves on hela cervical cancer cell. Trad. Med. J., 2014, 19(1), 24-28.
  105. Gao, L.; Li, H.; Li, B.; Shao, H.; Yu, X.; Miao, Z.; Zhang, L.; Zhu, L.; Sheng, H. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. J. Ethnopharmacol., 2022, 294, 115387. doi: 10.1016/j.jep.2022.115387 PMID: 35580770
  106. Ragasa, C.; Jr, E.; Virgilio, D.; Brkljaca, R.; Urban, S. Chemical constituents of Raphanus sativus. Der Pharma Chem., 2015, 7(11), 354-357.
  107. Sham, T.T.; Yuen, A.C.Y.; Ng, Y.F.; Chan, C.O.; Mok, D.K.W.; Chan, S.W. A review of the phytochemistry and pharmacological activities of raphani semen. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-16. doi: 10.1155/2013/636194 PMID: 23935670
  108. Pawlik, A.; Wała, M.; Hać, A.; Felczykowska, A.; Herman-Antosiewicz, A. Sulforaphene, an isothiocyanate present in radish plants, inhibits proliferation of human breast cancer cells. Phytomedicine, 2017, 29, 1-10. doi: 10.1016/j.phymed.2017.03.007 PMID: 28515021
  109. Gutiérrez, R.M.P.; Perez, R.L. Raphanus sativus (Radish): Their chemistry and biology. ScientificWorldJournal, 2004, 4, 811-837. doi: 10.1100/tsw.2004.131 PMID: 15452648
  110. Banihani, S. Radish (Raphanus sativus) and Diabetes. Nutrients, 2017, 9(9), 1014. doi: 10.3390/nu9091014 PMID: 28906451
  111. Wu, G.; Yan, Y.; Zhou, Y.; Duan, Y.; Zeng, S.; Wang, X.; Lin, W.; Ou, C.; Zhou, J.; Xu, Z. Sulforaphane: Expected to become a novel antitumor compound. Oncol. Res., 2020, 28(4), 439-446. doi: 10.3727/096504020X15828892654385 PMID: 32111265
  112. Banerjee, S.; Chatterjee, J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol., 2015, 52, 3158-3168. doi: 10.1007/s13197-014-1487-3 PMID: 26028699
  113. Jiang, C.; Zhao, W.; Zeng, Z.; Lai, X.; Wu, C.; Yuan, S.; Huang, Y.; Zhang, X. A treasure reservoir of genetic resource of tea plant (Camellia sinensis) in Dayao Mountain. Genet. Resour. Crop Evol., 2018, 65(1), 217-227. doi: 10.1007/s10722-017-0524-2
  114. Cengiz, M.F.; Turan, O.; Ozdemir, D.; Albayrak, Y.; Perincek, F.; Kocabas, H. Geographical origin of imported and domestic teas ( Camellia sinensis ) from Turkey as determined by stable isotope signatures. Int. J. Food Prop., 2017, 20(12), 3234-3243. doi: 10.1080/10942912.2017.1283327
  115. Marcos, A.; Fisher, A.; Rea, G.; Hill, S.J. Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J. Anal. At. Spectrom., 1998, 13(6), 521-525. doi: 10.1039/a708658j
  116. Tontul, I.; Torun, M.; Dincer, C.; Sahin-Nadeem, H.; Topuz, A.; Turna, T.; Ozdemir, F. Comparative study on volatile compounds in Turkish green tea powder: Impact of tea clone, shading level and shooting period. Food Res. Int., 2013, 53(2), 744-750. doi: 10.1016/j.foodres.2012.12.026
  117. Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (Black Cumin): A promising natural remedy for wide range of illnesses. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-16. doi: 10.1155/2019/1528635 PMID: 31214267
  118. Kokoska, L.; Havlik, J.; Valterova, I.; Sovova, H.; Sajfrtova, M.; Jankovska, I. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods. J. Food Prot., 2008, 71(12), 2475-2480. doi: 10.4315/0362-028X-71.12.2475 PMID: 19244901
  119. Isik, S.; Kartal, M.; Erdem, S.A. Quantitative analysis of thymoquinone in Nigella sativa L. (black cumin) seeds and commercial seed oils and seed oil capsules from Turkey. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 2017, 41(1), 34-41. doi: 10.1501/Eczfak_0000000593
  120. Mehta, B.K.; Verma, M.; Gupta, M. Novel lipid constituents identified in seeds of Nigella sativa (Linn). J. Braz. Chem. Soc., 2008, 19(3), 458-462. doi: 10.1590/S0103-50532008000300012
  121. Cheikh-Rouhou, S.; Besbes, S.; Hentati, B.; Blecker, C.; Deroanne, C.; Attia, H. Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chem., 2007, 101(2), 673-681. doi: 10.1016/j.foodchem.2006.02.022
  122. Abdelmeguid, N.E.; Fakhoury, R.; Kamal, S.M.; Al Wafai, R.J. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J. Diabetes, 2010, 2(4), 256-266. doi: 10.1111/j.1753-0407.2010.00091.x PMID: 20923501
  123. Solati, Z.; Baharin, B.S.; Bagheri, H. Antioxidant property, thymoquinone content and chemical characteristics of different extracts from Nigella sativa L. seeds. J. Am. Oil Chem. Soc., 2014, 91(2), 295-300. doi: 10.1007/s11746-013-2362-5
  124. Khan, M.A.; Chen, H.; Tania, M.; Zhang, D. Anticancer activities of Nigella sativa (Black Cumin). Afr J Tradit Complement Altern Med, 2011, 8(S), 226-232. doi: 10.4314/ajtcam.v8i5S.10
  125. Ghahramanloo, K.; Kamalidehghan, B.; Akbari Javar, H.; Teguh Widodo, R.; Majidzadeh, K.; Noordin, M.I. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des. Devel. Ther., 2017, 11, 2221-2226. doi: 10.2147/DDDT.S87251 PMID: 28814830
  126. Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419. doi: 10.3945/an.114.008052 PMID: 26178025
  127. Butt, A.J.; Roberts, C.G.; Seawright, A.A.; Oelrichs, P.B.; MacLeod, J.K.; Liaw, T.Y.E.; Kavallaris, M.; Somers-Edgar, T.J.; Lehrbach, G.M.; Watts, C.K.; Sutherland, R.L. A novel plant toxin, persin, with in vivo activity in the mammary gland, induces Bim-dependent apoptosis in human breast cancer cells. Mol. Cancer Ther., 2006, 5(9), 2300-2309. doi: 10.1158/1535-7163.MCT-06-0170 PMID: 16985064
  128. Falodun, A.; Engel, N.; Kragl, U.; Nebe, B.; Langer, P. Novel anticancer alkene lactone from Persea americana. Pharm. Biol., 2013, 51(6), 700-706. doi: 10.3109/13880209.2013.764326 PMID: 23570517
  129. Karatoprak, G.Ş.; Küpeli Akkol, E.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications. Molecules, 2020, 25(11), 2560. doi: 10.3390/molecules25112560 PMID: 32486408
  130. Wijewantha, N.; Eikanger, M.M.; Antony, R.M.; Potts, R.A.; Rezvani, K.; Sereda, G. Targeting colon cancer cells with enzyme-triggered casein-gated release of cargo from mesoporous silica-based nanoparticles. Bioconjug. Chem., 2021, 32(11), 2353-2365. doi: 10.1021/acs.bioconjchem.1c00416 PMID: 34672618
  131. Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140. doi: 10.1016/j.msec.2019.02.096 PMID: 30948047
  132. Wang, Y.; Yu, H.; Wang, S.; Gai, C.; Cui, X.; Xu, Z.; Li, W.; Zhang, W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng. C, 2021, 119, 111442. doi: 10.1016/j.msec.2020.111442 PMID: 33321583
  133. Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C, 2020, 114, 111035. doi: 10.1016/j.msec.2020.111035 PMID: 32994029
  134. Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomedicine, 2018, 13, 5113-5126. doi: 10.2147/IJN.S170862 PMID: 30233175
  135. Mostafa, S.M.; Gamal-Eldeen, A.M.; Maksoud, N.A.E.; Fahmi, A.A. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. An. Acad. Bras. Cienc., 2020, 92(4), e20200574. doi: 10.1590/0001-3765202020200574 PMID: 33206791
  136. Thipe, V.C.; Amiri, K.P.; Bloebaum, P.; Raphael, A.K.; Khoobchandani, M.; Katti, K.K.; Jurisson, S.S.; Katti, K.V. Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int. J. Nanomedicine, 2019, 14, 4413-4428. doi: 10.2147/IJN.S204443 PMID: 31417252
  137. Matloubi, Z.; Hassan, Z. HSA-curcumin nanoparticles: A promising substitution for curcumin as a cancer chemoprevention and therapy. Daru, 2020, 28(1), 209-219. doi: 10.1007/s40199-020-00331-2 PMID: 32270402
  138. Duse, L.; Baghdan, E.; Pinnapireddy, S.R.; Engelhardt, K.H.; Jedelská, J.; Schaefer, J.; Quendt, P.; Bakowsky, U. Preparation and characterization of curcumin loaded chitosan nanoparticles for photodynamic therapy. Phys. Status Solidi., A Appl. Mater. Sci., 2018, 215(15), 1700709. a. doi: 10.1002/pssa.201700709
  139. Pan, K.; Chen, H.; Baek, S.J.; Zhong, Q. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem., 2018, 246, 82-89. doi: 10.1016/j.foodchem.2017.11.002 PMID: 29291882

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024