The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review


Cite item

Full Text

Abstract

:The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.

About the authors

Rupa Chaudhuri

Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute

Email: info@benthamscience.net

Anurima Samanta

Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute

Email: info@benthamscience.net

Priyanka Saha

Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute

Email: info@benthamscience.net

Sukanya Ghosh

Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute

Email: info@benthamscience.net

Dona Sinha

Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464), 645-648. doi: 10.1038/367645a0 PMID: 7509044
  2. Visvader, J.E.; Lindeman, G.J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell, 2012, 10(6), 717-728. doi: 10.1016/j.stem.2012.05.007 PMID: 22704512
  3. Greene, R.; Pisano, M.M. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. Birth Defects Res. C Embryo Today, 2012, 90(2), 133-154. doi: 10.1002/bdrc.20180 PMID: 20544696
  4. Zhou, B.B.S.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov., 2009, 8(10), 806-823. doi: 10.1038/nrd2137 PMID: 19794444
  5. Fujiki, H.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate J. Cancer. Res. Clin. Oncol2, 2017, 143(12), 2401-2412.
  6. Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol. Cells, 2018, 41(2), 73-82. PMID: 29429153
  7. Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941. doi: 10.1080/10408398.2016.1231168 PMID: 27645804
  8. Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules, 2019, 25(1), 63. doi: 10.3390/molecules25010063 PMID: 31878082
  9. Chung, S.S.; Vadgama, J.V. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res., 2015, 35(1), 39-46. PMID: 25550533
  10. Rather, R.A.; Bhagat, M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol., 2018, 6, 10. doi: 10.3389/fcell.2018.00010 PMID: 29497610
  11. Appari, M.; Babu, K.R.; Kaczorowski, A.; Gros, W.; Her, I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int. J. Oncol., 2014, 45(4), 1391-1400. doi: 10.3892/ijo.2014.2539 PMID: 25017900
  12. Chen, D.; Pamu, S.; Cui, Q.; Chan, T.H.; Dou, Q.P. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg. Med. Chem., 2012, 20(9), 3031-3037. doi: 10.1016/j.bmc.2012.03.002 PMID: 22459208
  13. Fujiki, H.; Suganuma, M.; Imai, K.; Nakachi, K. Green tea: Cancer preventive beverage and/or drug. Cancer Lett., 2002, 188(1-2), 9-13. doi: 10.1016/S0304-3835(02)00379-8 PMID: 12406542
  14. Granja, A.; Pinheiro, M.; Reis, S. Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients, 2016, 8(5), 307. doi: 10.3390/nu8050307 PMID: 27213442
  15. Andreu Fernández, V.; Almeida Toledano, L.; Pizarro Lozano, N.; Navarro Tapia, E.; Gómez Roig, M.D.; De la Torre Fornell, R.; García Algar, Ó. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants, 2020, 9(5), 440. doi: 10.3390/antiox9050440 PMID: 32438698
  16. Shirakami, Y.; Shimizu, M. Possible mechanisms of green tea and its constituents against cancer. Molecules, 2018, 23(9), 2284. doi: 10.3390/molecules23092284 PMID: 30205425
  17. Wang, L.; Li, P.; Feng, K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur. J. Med. Chem., 2023, 250, 115197. doi: 10.1016/j.ejmech.2023.115197 PMID: 36780831
  18. Farabegoli, F.; Pinheiro, M. Epigallocatechin-3-gallate delivery in lipid-based nanoparticles: Potentiality and perspectives for future applications in cancer chemoprevention and therapy. Front. Pharmacol., 2022, 13, 809706. doi: 10.3389/fphar.2022.809706 PMID: 35496283
  19. Eng, Q.Y.; Thanikachalam, P.V.; Ramamurthy, S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol., 2018, 210, 296-310. doi: 10.1016/j.jep.2017.08.035 PMID: 28864169
  20. Yong Feng, W. Metabolism of green tea catechins: An overview. Curr. Drug Metab., 2006, 7(7), 755-809. doi: 10.2174/138920006778520552 PMID: 17073579
  21. Li, C.; Lee, M.J.; Sheng, S.; Meng, X.; Prabhu, S.; Winnik, B.; Huang, B.; Chung, J.Y.; Yan, S.; Ho, C.T.; Yang, C.S. Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem. Res. Toxicol., 2000, 13(3), 177-184. doi: 10.1021/tx9901837 PMID: 10725114
  22. Li, S.; Lo, C.Y.; Pan, M.H.; Lai, C.S.; Ho, C.T. Black tea: Chemical analysis and stability. Food Funct., 2013, 4(1), 10-18. doi: 10.1039/C2FO30093A PMID: 23037977
  23. Takagaki, A.; Nanjo, F. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. J. Agric. Food Chem., 2010, 58(2), 1313-1321. doi: 10.1021/jf903375s PMID: 20043675
  24. Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci., 2011, 12(9), 5592-5603. doi: 10.3390/ijms12095592 PMID: 22016611
  25. Ishii, T.; Ichikawa, T.; Minoda, K.; Kusaka, K.; Ito, S.; Suzuki, Y.; Akagawa, M.; Mochizuki, K.; Goda, T.; Nakayama, T. Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: Participation of reversible covalent binding for interaction and stabilization. Biosci. Biotechnol. Biochem., 2011, 75(1), 100-106. doi: 10.1271/bbb.100600 PMID: 21228463
  26. Lee, M.J.; Maliakal, P.; Chen, L.; Meng, X.; Bondoc, F.Y.; Prabhu, S.; Lambert, G.; Mohr, S.; Yang, C.S. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol. Biomarkers Prev., 2002, 11(10 Pt 1), 1025-1032. PMID: 12376503
  27. Giunta, B.; Hou, H.; Zhu, Y.; Salemi, J.; Ruscin, A.; Shytle, R.D.; Tan, J. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci. Lett., 2010, 471(3), 134-138. doi: 10.1016/j.neulet.2010.01.026 PMID: 20096749
  28. Landis-Piwowar, K.R.; Wan, S.B.; Wiegand, R.A.; Kuhn, D.J.; Chan, T.H.; Dou, Q.P. Methylation suppresses the proteasome- inhibitory function of green tea polyphenols. J. Cell. Physiol., 2007, 213(1), 252-260. doi: 10.1002/jcp.21124 PMID: 17477351
  29. Yoshizawa, S.; Horiuchi, T.; Fujiki, H.; Yoshida, T.; Okuda, T.; Sugimura, T. Antitumor promoting activity of (−)- epigallocatechin gallate, the main constituent of "Tannin" in green tea. Phytother. Res., 1987, 1(1), 44-47. doi: 10.1002/ptr.2650010110
  30. Watanabe, T.; Kuramochi, H.; Takahashi, A.; Imai, K.; Katsuta, N.; Nakayama, T.; Fujiki, H.; Suganuma, M. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells. J. Cancer Res. Clin. Oncol., 2012, 138(5), 859-866. doi: 10.1007/s00432-012-1159-5 PMID: 22297840
  31. Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.; Fujiki, H. Biophysical approach to mechanisms of cancer prevention and treatment with green tea catechins. Molecules, 2016, 21(11), 1566. doi: 10.3390/molecules21111566 PMID: 27869750
  32. Nakachi, K.; Matsuyama, S.; Miyake, S.; Suganuma, M.; Imai, K. Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. Biofactors, 2000, 13(1-4), 49-54. doi: 10.1002/biof.5520130109 PMID: 11237198
  33. Seufferlein, T.; Ettrich, T.J.; Menzler, S.; Messmann, H.; Kleber, G.; Zipprich, A.; Frank-Gleich, S.; Algül, H.; Metter, K.; Odemar, F.; Heuer, T.; Hügle, U.; Behrens, R.; Berger, A.W.; Scholl, C.; Schneider, K.L.; Perkhofer, L.; Rohlmann, F.; Muche, R.; Stingl, J.C. Green tea extract to prevent colorectal adenomas, results of a randomized, placebo-controlled clinical trial. Am. J. Gastroenterol., 2022, 117(6), 884-894. doi: 10.14309/ajg.0000000000001706 PMID: 35213393
  34. Mineva, N.D.; Paulson, K.E.; Naber, S.P.; Yee, A.S.; Sonenshein, G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One, 2013, 8(9), e73464. doi: 10.1371/journal.pone.0073464 PMID: 24039951
  35. Giró-Perafita, A.; Rabionet, M.; Planas, M.; Feliu, L.; Ciurana, J.; Ruiz-Martínez, S.; Puig, T. EGCG-derivative G28 shows high efficacy inhibiting the mammosphere-forming capacity of sensitive and resistant TNBC models. Molecules, 2019, 24(6), 1027. doi: 10.3390/molecules24061027 PMID: 30875891
  36. Hajipour, H.; Hamishehkar, H.; Nazari Soltan Ahmad, S.; Barghi, S.; Maroufi, N. F.; Taheri, R. A. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif. Cells, Nanomedicine Biotechnol., 2018, 46(sup1), 283-292. doi: 10.1080/21691401.2017.1423493
  37. Jiang, P.; Xu, C.; Chen, L.; Chen, A.; Wu, X.; Zhou, M.; Haq, I.; Mariyam, Z.; Feng, Q. EGCG inhibits CSC- like properties through targeting miR- 485/CD44 axis in A549- cisplatin resistant cells. Mol. Carcinog., 2018, 57(12), 1835-1844. doi: 10.1002/mc.22901 PMID: 30182373
  38. Zhang, L.; Xie, J.; Gan, R.; Wu, Z.; Luo, H.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Synergistic inhibition of lung cancer cells by EGCG and NF-κB inhibitor BAY11-7082. J. Cancer, 2019, 10(26), 6543-6556. doi: 10.7150/jca.34285 PMID: 31777584
  39. Sakamoto, Y.; Terashita, N.; Muraguchi, T.; Fukusato, T.; Kubota, S. Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci. Biotechnol. Biochem., 2013, 77(9), 1799-1803. doi: 10.1271/bbb.120882 PMID: 24018658
  40. Li, M.; Li, J.J.; Gu, Q.H.; an, J.; Cao, L.M.; Yang, H.P.; Hu, C.P. EGCG induces lung cancer A549 cell apoptosis by regulating Ku70 acetylation. Oncol. Rep., 2016, 35(4), 2339-2347. doi: 10.3892/or.2016.4587 PMID: 26794417
  41. Chen, B.H.; Hsieh, C.H.; Tsai, S.Y.; Wang, C.Y.; Wang, C.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep., 2020, 10(1), 5163. doi: 10.1038/s41598-020-62136-2 PMID: 32198390
  42. Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget, 2016, 7(13), 16158-16171. doi: 10.18632/oncotarget.7567 PMID: 26930714
  43. Datta, S.; Sinha, D. Low dose epigallocatechin- 3- gallate revives doxorubicin responsiveness by a redox- sensitive pathway in A549 lung adenocarcinoma cells. J. Biochem. Mol. Toxicol., 2022, 36(4), e22999. doi: 10.1002/jbt.22999 PMID: 35218280
  44. Datta, S.; Bishayee, A.; Sinha, D. Black tea bioactive phytoconstituents realign NRF2 for anticancer activity in lung adenocarcinoma. Front. Pharmacol., 2023, 14, 1176819. doi: 10.3389/fphar.2023.1176819 PMID: 37305533
  45. Datta, S.; Sinha, D. EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells. J. Funct. Foods, 2019, 62, 103553. doi: 10.1016/j.jff.2019.103553
  46. Pan, T.; Han, D.; Xu, Y.; Peng, W.; Bai, L.; Zhou, X.; He, H. LC–MS based metabolomics study of the effects of EGCG on A549 cells. Front. Pharmacol., 2021, 12, 732716. doi: 10.3389/fphar.2021.732716 PMID: 34650434
  47. Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; Han, H.Y. (−)-Epigallocatechin-3-Gallate inhibits colorectal cancer stem cells by suppressing wnt/β-catenin pathway. Nutrients, 2017, 9(6), 572. doi: 10.3390/nu9060572 PMID: 28587207
  48. Seok, J.H.; Kim, D.H.; Kim, H.J.; Jo, H.H.; Kim, E.Y.; Jeong, J.H.; Park, Y.S.; Lee, S.H.; Kim, D.J.; Nam, S.Y.; Lee, B.J.; Lee, H.J. Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation. J. Vet. Sci., 2022, 23(5), e74. doi: 10.4142/jvs.22097 PMID: 36174978
  49. Kassouri, C.; Rodriguez Torres, S.; Gonzalez Suarez, N.; Duhamel, S.; Annabi, B. EGCG prevents the transcriptional reprogramming of an inflammatory and immune-suppressive molecular signature in macrophage-like differentiated human HL60 promyelocytic leukemia cells. Cancers, 2022, 14(20), 5065. doi: 10.3390/cancers14205065 PMID: 36291849
  50. Roy, M.; Chakrabarty, S.; Sinha, D.; Bhattacharya, R.K.; Siddiqi, M. Anticlastogenic, antigenotoxic and apoptotic activity of epigallocatechin gallate: A green tea polyphenol. Mutat. Res., 2003, 523-524, 33-41. doi: 10.1016/S0027-5107(02)00319-6 PMID: 12628501
  51. Chiou, Y.S.; Sang, S.; Cheng, K.H.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis, 2013, 34(6), 1315-1322. doi: 10.1093/carcin/bgt042 PMID: 23385063
  52. da Silva-Diz, V.; Lorenzo-Sanz, L.; Bernat-Peguera, A.; Lopez-Cerda, M.; Muñoz, P. Cancer cell plasticity: Impact on tumor progression and therapy response. Semin. Cancer Biol., 2018, 53, 48-58. doi: 10.1016/j.semcancer.2018.08.009 PMID: 30130663
  53. He, K.; Xu, T.; Xu, Y.; Ring, A.; Kahn, M.; Goldkorn, A. Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem- like phenotype through modulation of the PI3K/Akt/β- catenin/CBP pathway. Int. J. Cancer, 2014, 134(1), 43-54. doi: 10.1002/ijc.28341 PMID: 23784558
  54. Lau, E.Y.T.; Ho, N.P.Y.; Lee, T.K.W. Cancer stem cells and their microenvironment: Biology and therapeutic implications. Stem Cells Int., 2017, 2017, 1-11. doi: 10.1155/2017/3714190 PMID: 28337221
  55. Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol., 2015, 12(8), 445-464. doi: 10.1038/nrclinonc.2015.61 PMID: 25850553
  56. Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284. doi: 10.1038/nrc1590 PMID: 15803154
  57. Shiozawa, Y.; Nie, B.; Pienta, K.J.; Morgan, T.M.; Taichman, R.S. Cancer stem cells and their role in metastasis. Pharmacol. Ther., 2013, 138(2), 285-293. doi: 10.1016/j.pharmthera.2013.01.014 PMID: 23384596
  58. Schatton, T.; Frank, M.H. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res., 2008, 21(1), 39-55. doi: 10.1111/j.1755-148X.2007.00427.x PMID: 18353142
  59. Zhang, D.; Tang, D.G.; Rycaj, K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin. Cancer Biol., 2018, 52(Pt 2), 94-106. doi: 10.1016/j.semcancer.2018.05.001 PMID: 29752993
  60. Mamun, M.A.; Mannoor, K.; Cao, J.; Qadri, F.; Song, X. SOX2 in cancer stemness: Tumor malignancy and therapeutic potentials. J. Mol. Cell Biol., 2020, 12(2), 85-98. doi: 10.1093/jmcb/mjy080 PMID: 30517668
  61. Mei, Y.; Liu, Y. Bin; Cao, S.; Tian, Z. W.; Zhou, H. H. RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/β-Catenin signaling. Cell Death Dis., 2021, 12(9), 812. doi: 10.1038/s41419-021-04097-6 PMID: 34453036
  62. Medema, J.P.; Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature, 2011, 474(7351), 318-326. doi: 10.1038/nature10212 PMID: 21677748
  63. Huang, H.; Wang, C.; Liu, F.; Li, H.Z.; Peng, G.; Gao, X.; Dong, K.Q.; Wang, H.R.; Kong, D.P.; Qu, M.; Dai, L.H.; Wang, K.J.; Zhou, Z.; Yang, J.; Yang, Z.Y.; Cheng, Y.Q.; Tian, Q.Q.; Liu, D.; Xu, C.L.; Xu, D.F.; Cui, X.G.; Sun, Y.H. Reciprocal network between cancer stem-like cells and macrophages facilitates the progression and androgen deprivation therapy resistance of prostate cancer. Clin. Cancer Res., 2018, 24(18), 4612-4626. doi: 10.1158/1078-0432.CCR-18-0461 PMID: 29691294
  64. Ji, C.; Yang, L.; Yi, W.; Xiang, D.; Wang, Y.; Zhou, Z.; Qian, F.; Ren, Y.; Cui, W.; Zhang, X.; Zhang, P.; Wang, J.M.; Cui, Y.; Bian, X. Capillary morphogenesis gene 2 maintains gastric cancer stem-like cell phenotype by activating a Wnt/β-catenin pathway. Oncogene, 2018, 37(29), 3953-3966. doi: 10.1038/s41388-018-0226-z PMID: 29662192
  65. Nakano, M.; Kikushige, Y.; Miyawaki, K.; Kunisaki, Y.; Mizuno, S.; Takenaka, K.; Tamura, S.; Okumura, Y.; Ito, M.; Ariyama, H.; Kusaba, H.; Nakamura, M.; Maeda, T.; Baba, E.; Akashi, K. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene, 2019, 38(6), 780-793. doi: 10.1038/s41388-018-0480-0 PMID: 30181548
  66. Pan, X.; Zhao, B.; Song, Z.; Han, S.; Wang, M. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J. Pharmacol. Sci., 2016, 130(2), 85-93. doi: 10.1016/j.jphs.2015.12.003 PMID: 26810571
  67. Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654. doi: 10.1007/s10555-016-9648-7 PMID: 27878502
  68. Bierie, B.; Pierce, S.E.; Kroeger, C.; Stover, D.G.; Pattabiraman, D.R.; Thiru, P.; Liu Donaher, J.; Reinhardt, F.; Chaffer, C.L.; Keckesova, Z.; Weinberg, R.A. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl. Acad. Sci. USA, 2017, 114(12), E2337-E2346. doi: 10.1073/pnas.1618298114 PMID: 28270621
  69. Marquardt, S.; Solanki, M.; Spitschak, A.; Vera, J.; Pützer, B.M. Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin. Cancer Biol., 2018, 53, 90-109. doi: 10.1016/j.semcancer.2018.06.006 PMID: 29966677
  70. El Hout, M.; Dos Santos, L.; Hamaï, A.; Mehrpour, M. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin. Cancer Biol., 2018, 53, 125-138. doi: 10.1016/j.semcancer.2018.07.009 PMID: 30071257
  71. Xu, F.; Wang, F.; Yang, T.; Sheng, Y.; Zhong, T.; Chen, Y. Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int., 2014, 14(1), 538. doi: 10.1186/s12935-014-0142-4 PMID: 25550688
  72. Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57. doi: 10.1016/j.canlet.2015.08.018 PMID: 26319899
  73. Wang, Y.H.; Scadden, D.T. Harnessing the apoptotic programs in cancer stem- like cells. EMBO Rep., 2015, 16(9), 1084-1098. doi: 10.15252/embr.201439675 PMID: 26253117
  74. Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756-760. doi: 10.1038/nature05236 PMID: 17051156
  75. Lee, H.H.; Bellat, V.; Law, B. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS One, 2017, 12(2), e0171044. doi: 10.1371/journal.pone.0171044 PMID: 28196146
  76. Goldman, A.; Majumder, B.; Dhawan, A.; Ravi, S.; Goldman, D.; Kohandel, M.; Majumder, P.K.; Sengupta, S. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat. Commun., 2015, 6(1), 6139. doi: 10.1038/ncomms7139 PMID: 25669750
  77. Gammon, L.; Biddle, A.; Heywood, H.K.; Johannessen, A.C.; Mackenzie, I.C. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One, 2013, 8(4), e62493. doi: 10.1371/journal.pone.0062493 PMID: 23638097
  78. Liu, P-P.; Liao, J.; Tang, Z-J.; Wu, W-J.; Yang, J.; Zeng, Z-L.; Hu, Y.; Wang, P.; Ju, H-Q.; Xu, R-H.; Huang, P. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ., 2014, 21(1), 124-135. doi: 10.1038/cdd.2013.131 PMID: 24096870
  79. Yu, C.C.; Chen, P.N.; Peng, C.Y.; Yu, C.H.; Chou, M.Y. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget, 2016, 7(15), 20180-20192. doi: 10.18632/oncotarget.7745 PMID: 26933999
  80. Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S. Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem-like cells through inhibition of CLOCK. Int. J. Mol. Med., 2020, 46(6), 2216-2224. doi: 10.3892/ijmm.2020.4758 PMID: 33125096
  81. Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhu, M.; Wu, R.; Huang, C.; Ma, X.; Geng, S.; Wu, J.; Zhong, C. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun., 2017, 482(1), 15-21. doi: 10.1016/j.bbrc.2016.11.038 PMID: 27836540
  82. Jiang, P.; Chen, A.; Wu, X.; Zhou, M.; ul Haq, I.; Mariyam, Z.; Feng, Q. NEAT1 acts as an inducer of cancer stem cell- like phenotypes in NSCLC by inhibiting EGCG- upregulated CTR1. J. Cell. Physiol., 2018, 233(6), 4852-4863. doi: 10.1002/jcp.26288 PMID: 29152741
  83. Namiki, K.; Wongsirisin, P.; Yokoyama, S.; Sato, M.; Rawangkan, A.; Sakai, R.; Iida, K.; Suganuma, M. (−)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci. Rep., 2020, 10(1), 2444. doi: 10.1038/s41598-020-59281-z PMID: 32051483
  84. Gresseau, L.; Roy, M.E.; Duhamel, S.; Annabi, B. A signaling crosstalk links SNAIL to the 37/67 kDa Laminin-1 receptor ribosomal protein SA and regulates the acquisition of a cancer stem cell molecular signature in U87 glioblastoma neurospheres. Cancers, 2022, 14(23), 5944. doi: 10.3390/cancers14235944 PMID: 36497426
  85. Nishimura, N.; Hartomo, T.B.; Pham, T.V.H.; Lee, M.J.; Yamamoto, T.; Morikawa, S.; Hasegawa, D.; Takeda, H.; Kawasaki, K.; Kosaka, Y.; Yamamoto, N.; Kubokawa, I.; Mori, T.; Yanai, T.; Hayakawa, A.; Takeshima, Y.; Iijima, K.; Matsuo, M.; Nishio, H. Epigallocatechin gallate inhibits sphere formation of neuroblastoma BE(2)-C cells. Environ. Health Prev. Med., 2012, 17(3), 246-251. doi: 10.1007/s12199-011-0239-5 PMID: 21909813
  86. Li, Y.J.; Wu, S.L.; Lu, S.M.; Chen, F.; Guo, Y.; Gan, S.M.; Shi, Y.L.; Liu, S.; Li, S.L. (-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial–mesenchymal transition via NF-κB p65 inactivation. Tumour Biol., 2015, 36(4), 2747-2761. doi: 10.1007/s13277-014-2899-4 PMID: 25487615
  87. Lin, C.H.; Chao, L.K.; Hung, P.H.; Chen, Y.J. EGCG inhibits the growth and tumorigenicity of nasopharyngeal tumor-initiating cells through attenuation of STAT3 activation. Int. J. Clin. Exp. Pathol., 2014, 7(5), 2372-2381. PMID: 24966947
  88. Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. (-)-Epigallocatechin-3-gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435. doi: 10.3892/or.2019.7170 PMID: 31180522
  89. Tang, S.N.; Fu, J.; Nall, D.; Rodova, M.; Shankar, S.; Srivastava, R.K. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer, 2012, 131(1), 30-40. doi: 10.1002/ijc.26323 PMID: 21796625
  90. Wubetu, G.Y.; Shimada, M.; Morine, Y.; Ikemoto, T.; Ishikawa, D.; Iwahashi, S.; Yamada, S.; Saito, Y.; Arakawa, Y.; Imura, S. Epigallocatechin gallate hinders human hepatoma and colon cancer sphere formation. J. Gastroenterol. Hepatol., 2016, 31(1), 256-264. doi: 10.1111/jgh.13069 PMID: 26241688
  91. Kumazoe, M.; Takai, M.; Hiroi, S.; Takeuchi, C.; Yamanouchi, M.; Nojiri, T.; Onda, H.; Bae, J.; Huang, Y.; Takamatsu, K.; Yamashita, S.; Yamada, S.; Kangawa, K.; Takahashi, T.; Tanaka, H.; Tachibana, H. PDE3 inhibitor and EGCG combination treatment suppress cancer stem cell properties in pancreatic ductal adenocarcinoma. Sci. Rep., 2017, 7(1), 1917. doi: 10.1038/s41598-017-02162-9 PMID: 28507327
  92. Farabegoli, F.; Govoni, M.; Ciavarella, C.; Orlandi, M.; Papi, A. A RXR ligand 6-OH-11-O-hydroxyphenanthrene with antitumour properties enhances (-)-epigallocatechin-3-gallate activity in three human breast carcinoma cell lines. BioMed Res. Int., 2014, 2014, 1-13. doi: 10.1155/2014/853086 PMID: 25013807
  93. Kumazoe, M.; Takai, M.; Bae, J.; Hiroi, S.; Huang, Y.; Takamatsu, K.; Won, Y.; Yamashita, M.; Hidaka, S.; Yamashita, S.; Yamada, S.; Murata, M.; Tsukamoto, S.; Tachibana, H. FOXO3 is essential for CD44 expression in pancreatic cancer cells. Oncogene, 2017, 36(19), 2643-2654. doi: 10.1038/onc.2016.426 PMID: 27893718
  94. Jiang, P.; Xu, C.; Chen, L.; Chen, A.; Wu, X.; Zhou, M.; Haq, I.U.; Mariyam, Z.; Feng, Q. Epigallocatechin- 3- gallate inhibited cancer stem cell–like properties by targeting hsa- mir- 485- 5p/RXRα in lung cancer. J. Cell. Biochem., 2018, 119(10), 8623-8635. doi: 10.1002/jcb.27117 PMID: 30058740
  95. Wang, W.; Chen, D.; Zhu, K. SOX2OT variant 7 contributes to the synergistic interaction between EGCG and Doxorubicin to kill osteosarcoma via autophagy and stemness inhibition. J. Exp. Clin. Cancer Res., 2018, 37(1), 37. doi: 10.1186/s13046-018-0689-3 PMID: 29475441
  96. Tang, S.N.; Singh, C.; Nall, D.; Meeker, D.; Shankar, S.; Srivastava, R.K. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J. Mol. Signal., 2010, 5, 14. doi: 10.1186/1750-2187-5-14 PMID: 20718984
  97. Palinkas, L.; Horwitz, S.; Green, C. Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. Physiol. Behav., 2016, 176(1), 139-148.
  98. Lee, S.H.; Nam, H.J.; Kang, H.J.; Kwon, H.W.; Lim, Y.C. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur. J. Cancer, 2013, 49(15), 3210-3218. doi: 10.1016/j.ejca.2013.06.025 PMID: 23876835
  99. Wang, X.; Jiang, P.; Wang, P.; Yang, C.S.; Wang, X.; Feng, Q. Correction: EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One, 2015, 10(6), e0132086. doi: 10.1371/journal.pone.0132086 PMID: 26121483
  100. Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016, 7(28), 43337-43351. doi: 10.18632/oncotarget.9712 PMID: 27270317
  101. Zhang, Y.; Wang, S.X.; Ma, J.W.; Li, H.Y.; Ye, J.C.; Xie, S.M.; Du, B.; Zhong, X.Y. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J. Neurooncol., 2015, 121(1), 41-52. doi: 10.1007/s11060-014-1604-1 PMID: 25173233
  102. Farabegoli, F.; Govoni, M.; Spisni, E.; Papi, A. Epigallocatechin-3-gallate and 6-OH-11-O-Hydroxyphenanthrene Limit BE(2)-C neuroblastoma cell growth and neurosphere formation in vitro. Nutrients, 2018, 10(9), 1141. doi: 10.3390/nu10091141 PMID: 30135355
  103. Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855. doi: 10.1016/j.phytochem.2006.06.020 PMID: 16876833
  104. Ullmann, U.; Haller, J.; Decourt, J.P.; Girault, N.; Girault, J.; Richard-Caudron, A.S.; Pineau, B.; Weber, P. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res., 2003, 31(2), 88-101. doi: 10.1177/147323000303100205 PMID: 12760312
  105. Shutava, T.G.; Balkundi, S.S.; Vangala, P.; Steffan, J.J.; Bigelow, R.L.; Cardelli, J.A.; O’Neal, D.P.; Lvov, Y.M. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano, 2009, 3(7), 1877-1885. doi: 10.1021/nn900451a PMID: 19534472
  106. Janle, E.M.; Morré, D.M.; Morré, D.J.; Zhou, Q.; Zhu, Y. Pharmacokinetics of green tea catechins in extract and sustained-release preparations. J. Diet. Suppl., 2008, 5(3), 248-263. doi: 10.1080/19390210802414279 PMID: 19885387
  107. Jatoi, A.; Ellison, N.; Burch, P.A.; Sloan, J.A.; Dakhil, S.R.; Novotny, P.; Tan, W.; Fitch, T.R.; Rowland, K.M.; Young, C.Y.F.; Flynn, P.J. A Phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer, 2003, 97(6), 1442-1446. doi: 10.1002/cncr.11200 PMID: 12627508
  108. Hou, Z.; Sang, S.; You, H.; Lee, M.J.; Hong, J.; Chin, K.V.; Yang, C.S. Mechanism of action of (-)-epigallocatechin-3-gallate: Auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res., 2005, 65(17), 8049-8056. doi: 10.1158/0008-5472.CAN-05-0480 PMID: 16140980
  109. de Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of ( − )-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23(3), 187-196. doi: 10.3109/08982104.2013.788023 PMID: 23600473
  110. Lin, C.H.; Shen, Y.A.; Hung, P.H.; Yu, Y.B.; Chen, Y.J. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complement. Altern. Med., 2012, 12(1), 201. doi: 10.1186/1472-6882-12-201 PMID: 23110507
  111. Zhou, Y.; Li, N.; Zhuang, W.; Liu, G.; Wu, T.; Yao, X.; Du, L.; Wei, M.; Wu, X. Green tea and gastric cancer risk: Meta-analysis of epidemiologic studies. Asia Pac. J. Clin. Nutr., 2008, 17(1), 159-165. PMID: 18364341
  112. Lin, Y.; Kikuchi, S.; Tamakoshi, A.; Yagyu, K.; Obata, Y.; Kurosawa, M.; Inaba, Y.; Kawamura, T.; Motohashi, Y.; Ishibashi, T. Green tea consumption and the risk of pancreatic cancer in Japanese adults. Pancreas, 2008, 37(1), 25-30. doi: 10.1097/MPA.0b013e318160a5e2 PMID: 18580440
  113. Sasazuki, S.; Tamakoshi, A.; Matsuo, K.; Ito, H.; Wakai, K.; Nagata, C.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Inoue, M.; Tsugane, S. Green tea consumption and gastric cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn. J. Clin. Oncol., 2012, 42(4), 335-346. doi: 10.1093/jjco/hys009 PMID: 22371426
  114. Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821. doi: 10.1016/j.bcp.2011.07.093 PMID: 21827739
  115. Fujiki, H. Two stages of cancer prevention with green tea. J. Cancer Res. Clin. Oncol., 1999, 125(11), 589-597. doi: 10.1007/s004320050321 PMID: 10541965
  116. Fujiki, H.; Suganuma, M.; Okabe, S.; Sueoka, E.; Suga, K.; Imai, K.; Nakachi, K.; Kimura, S. Mechanistic findings of green tea as cancer preventive for humans. Proc. Soc. Exp. Biol. Med., 1999, 220(4), 225-228. doi: 10.1046/j.1525-1373.1999.d01-38.x PMID: 10202393
  117. Shankar, S.; Suthakar, G.; Srivastava, R.K. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front. Biosci., 2007, 12(12), 5039-5051. doi: 10.2741/2446 PMID: 17569628
  118. Shahriari Felordi, M.; Alikhani, M.; Farzaneh, Z.; Alipour Choshali, M.; Ebrahimi, M.; Aboulkheyr Es, H.; Piryaei, A.; Najimi, M.; Vosough, M. (-)-Epigallocatechin-3-gallate induced apoptosis by dissociation of C-FLIP /Ku70 complex in gastric cancer cells. J. Cell. Mol. Med., 2023, 27(17), 2572-2582. doi: 10.1111/jcmm.17873 PMID: 37537749
  119. Sonoda, J.I.; Ikeda, R.; Baba, Y.; Narumi, K.; Kawachi, A.; Tomishige, E.; Nishihara, K.; Takeda, Y.; Yamada, K.; Sato, K.; Motoya, T. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression. Exp. Ther. Med., 2014, 8(1), 59-63. doi: 10.3892/etm.2014.1719 PMID: 24944597
  120. Della Via, F.I.; Alvarez, M.C.; Basting, R.T.; Saad, S.T.O. The effects of green tea catechins in hematological malignancies. Pharmaceuticals, 2023, 16(7), 1021. doi: 10.3390/ph16071021 PMID: 37513933
  121. Demeule, M.; Brossard, M.; Pagé, M.; Gingras, D.; Béliveau, R. Matrix metalloproteinase inhibition by green tea catechins. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2000, 1478(1), 51-60. doi: 10.1016/S0167-4838(00)00009-1 PMID: 10719174
  122. Thomas, F.; Holly, J.M.P.; Persad, R.; Bahl, A.; Perks, C.M. Green tea extract (epigallocatechin-3-gallate) reduces efficacy of radiotherapy on prostate cancer cells. Urology, 2011, 78(2), 475.e15-475.e21. doi: 10.1016/j.urology.2011.03.031 PMID: 21676444
  123. Li, K.; Teng, C.; Min, Q. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem., 2020, 8, 573297. doi: 10.3389/fchem.2020.573297 PMID: 33195062
  124. Materials, N.R. Let’s talk about lipid nanoparticles. Nat. Rev. Mater., 2021, 6(2), 99. doi: 10.1038/s41578-021-00281-4
  125. Granja, A.; Neves, A.R.; Sousa, C.T.; Pinheiro, M.; Reis, S. EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon, 2019, 5(7), e02020. doi: 10.1016/j.heliyon.2019.e02020 PMID: 31317081
  126. Fang, J.Y.; Hung, C.F.; Hwang, T.L.; Huang, Y.L. Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J. Drug Target., 2005, 13(1), 19-27. doi: 10.1080/10611860400015977 PMID: 15848951
  127. Radhakrishnan, R.; Pooja, D.; Kulhari, H.; Gudem, S.; Ravuri, H.G.; Bhargava, S.; Ramakrishna, S. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem. Phys. Lipids, 2019, 224, 104770. doi: 10.1016/j.chemphyslip.2019.04.005 PMID: 30965023
  128. Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640. doi: 10.1016/j.biomaterials.2011.06.073 PMID: 21782236
  129. Chen, C.; Hsieh, D. Improving anticancer efficacy of nanoparticles in murine B16F10 melanoma cells. Drug Des. Devel. Ther., 2014, 8, 459-474. PMID: 24855338
  130. Sanna, V.; Pala, N.; Dessì, G.; Manconi, P.; Mariani, A.; Dedola, S.; Rassu, M.; Crosio, C.; Iaccarino, C.; Sechi, M. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities. Int. J. Nanomedicine, 2014, 9(1), 4935-4951. PMID: 25364251
  131. Gonzalez Suarez, N.; Rodriguez Torres, S.; Ouanouki, A.; El Cheikh-Hussein, L.; Annabi, B. EGCG inhibits adipose-derived mesenchymal stem cells differentiation into adipocytes and prevents a STAT3-mediated paracrine oncogenic control of triple-negative breast cancer cell invasive phenotype. Molecules, 2021, 26(6), 1506. doi: 10.3390/molecules26061506 PMID: 33801973
  132. Gonzalez Suarez, N.; Fernandez-Marrero, Y.; Torabidastgerdooei, S.; Annabi, B. EGCG prevents the onset of an inflammatory and cancer-associated adipocyte-like phenotype in adipose-derived mesenchymal stem/stromal cells in response to the triple-negative breast cancer secretome. Nutrients, 2022, 14(5), 1099. doi: 10.3390/nu14051099 PMID: 35268073
  133. Jeong, J.Y.; Suresh, S.; Jang, M.; Park, M.N.; Gobianand, K.; You, S.; Yeon, S.H.; Lee, H.J. Epigallocatechin-3-gallate suppresses the lipid deposition through the apoptosis during differentiation in bovine bone marrow mesenchymal stem cells. Cell Biol. Int., 2015, 39(1), 52-64. doi: 10.1002/cbin.10343 PMID: 25044539

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers