Therapeutic Potential of Decoys for Prostate Cancers: A Review of Recent Updates


如何引用文章

全文:

详细

Prostate cancer is ranked second among the most common male cancers. Androgen deprivation therapy (ADT) has long been the first-line treatment and the basis for all other therapies, reducing circulating androgens to castration levels and preventing disease development. Nevertheless, ADT monotherapy may not always limit disease development, and even at low testosterone levels, hormone-sensitive prostate cancer will become castration-resistant. Recent research demonstrates that prostate cancer can have a range of potentially actionable genetic abnormalities; no medications that target these variations have yet been shown to elicit therapeutic advantages. Despite their established efficacy in the management of other cancers, advanced genetic or immunological approaches are not regularly used to treat prostate cancer patients. As a result, there is an unmet demand for medicines that offer a better chance of survival than the existing castration- resistance prostate cancer (CRPC) therapy regimens. The use of oligodeoxynucleotides (ODN) and peptides in decoy technology have been developed as novel therapeutic approaches. Decoy ODNs bind to a particular transcription factor with high affinity and may suppress gene transcription. Peptide decoys bind to specific ligands with high specificity and inhibit signaling pathways. Recent evidence supports the notion that these techniques are promising and attractive in the fight against cancer. In the present review, we discuss the use of decoy technology as a novel therapeutic approach against prostate cancer.

作者简介

Samaneh Rezaei

Student Research Committee, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Maryam Mahjoubin-Tehran

Applied Biomedical Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Rabah Iratni

Department of Biology, College of Science, UAE University, United Arab Emirates University

Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci. (Basel), 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
  2. Siegel, D.A.; O’Neil, M.E.; Richards, T.B.; Dowling, N.F.; Weir, H.K. Prostate cancer incidence and survival, by stage and race/ethnicity — United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(41), 1473-1480. doi: 10.15585/mmwr.mm6941a1 PMID: 33056955
  3. Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol., 2009, 6(2), 76-85. doi: 10.1038/ncpuro1296 PMID: 19198621
  4. Trewartha, D.; Carter, K. Advances in prostate cancer treatment. Nat. Rev. Drug Discov., 2013, 12(11), 823-824. doi: 10.1038/nrd4068 PMID: 24172327
  5. Sartor, O.; de Bono, J.S. Metastatic prostate cancer. N. Engl. J. Med., 2018, 378(7), 645-657. doi: 10.1056/NEJMra1701695 PMID: 29412780
  6. Amaral, TMS; Macedo, D; Fernandes, I; Costa, L Castration-resistant prostate cancer: mechanisms, targets, and treatment. Prostate Cancer, 2012, 1-11. doi: 10.1155/2012/327253
  7. Powers, E.; Karachaliou, G.S.; Kao, C.; Harrison, M.R.; Hoimes, C.J.; George, D.J.; Armstrong, A.J.; Zhang, T. Novel therapies are changing treatment paradigms in metastatic prostate cancer. J. Hematol. Oncol., 2020, 13(1), 144. doi: 10.1186/s13045-020-00978-z PMID: 33115529
  8. Li, N.; Truong, S.; Nouri, M.; Moore, J.; Al Nakouzi, N.; Lubik, A.A.; Buttyan, R. Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene, 2018, 37(17), 2313-2325. doi: 10.1038/s41388-017-0098-7 PMID: 29429990
  9. Li, X.; Liu, Y.; Wu, B.; Dong, Z.; Wang, Y.; Lu, J.; Shi, P.; Bai, W.; Wang, Z. Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncol. Rep., 2014, 32(6), 2605-2611. doi: 10.3892/or.2014.3511 PMID: 25333856
  10. Mahjoubin-Tehran, M.; Rezaei, S.; Atkin, S.L.; Montecucco, F.; Sahebkar, A. Decoys as potential therapeutic tools for diabetes. Drug Discov. Today, 2021, 26(7), 1669-1679. doi: 10.1016/j.drudis.2021.04.004 PMID: 33862194
  11. Mahjoubin-Tehran, M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Orafai, H.M.; Jamialahmadi, T.; Sahebkar, A. Peptide decoys: A new technology offering therapeutic opportunities for breast cancer. Drug Discov. Today, 2020, 25(3), 593-598. doi: 10.1016/j.drudis.2020.01.010 PMID: 31978387
  12. Mahjoubin-Tehran, M.; Teng, Y.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Markin, A.M.; Sahebkar, A. Decoy technology as a promising therapeutic tool for atherosclerosis. Int. J. Mol. Sci., 2021, 22(9), 4420. doi: 10.3390/ijms22094420 PMID: 33922585
  13. Tehran, M.M.; Rezaei, S.; Jalili, A.; Aghaee-Bakhtiari, S.H.; Sahebkar, A. Decoy oligodeoxynucleotide technology: An emerging paradigm for breast cancer treatment. Drug Discov. Today, 2020, 25(1), 195-200. doi: 10.1016/j.drudis.2019.10.008 PMID: 31669652
  14. Vahdat Lasemi, F.; Mahjoubin Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Jaafari, M.R.; Sahebkar, A. Harnessing nucleic acid-based therapeutics for atherosclerotic cardiovascular disease: State of the art. Drug Discov. Today, 2019, 24(5), 1116-1131. doi: 10.1016/j.drudis.2019.04.007 PMID: 30980904
  15. Hecker, M.; Wagner, A.H. Transcription factor decoy technology: A therapeutic update. Biochem. Pharmacol., 2017, 144, 29-34. doi: 10.1016/j.bcp.2017.06.122 PMID: 28642036
  16. Rad, S.M.A.H.; Langroudi, L.; Kouhkan, F.; Yazdani, L.; Koupaee, A.N.; Asgharpour, S.; Shojaei, Z.; Bamdad, T.; Arefian, E. Transcription factor decoy: A pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol., 2015, 36(7), 4871-4881. doi: 10.1007/s13277-015-3344-z PMID: 25835969
  17. Toshchakov, V.Y.; Vogel, S.N. Cell-penetrating TIR BB loop decoy peptides. Expert Opin. Biol. Ther., 2007, 7(7), 1035-1050. doi: 10.1517/14712598.7.7.1035 PMID: 17665992
  18. Wang, T.; Jiang, A.; Zhang, J.; Jing, F. Apoptosis induction by E2F decoy DNA of the prostate cancer cell line. Braz. Arch. Biol. Technol., 2010, 53(2), 327-334. doi: 10.1590/S1516-89132010000200011
  19. Law, J.H.; Li, Y.; To, K.; Wang, M.; Astanehe, A.; Lambie, K.; Dhillon, J.; Jones, S.J.M.; Gleave, M.E.; Eaves, C.J.; Dunn, S.E. Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability. PLoS One, 2010, 5(9), e12661. doi: 10.1371/journal.pone.0012661 PMID: 20844753
  20. Bonfil, R.D.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.; Osenkowski, P.; Nabha, S.; Yamamoto, H.; Chinni, S.R.; Zhao, H.; Mobashery, S.; Vessella, R.L.; Fridman, R.; Cher, M.L. Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. Am. J. Pathol., 2007, 170(6), 2100-2111. doi: 10.2353/ajpath.2007.060720 PMID: 17525276
  21. Quayle, S.N.; Mawji, N.R.; Wang, J.; Sadar, M.D. Androgen receptor decoy molecules block the growth of prostate cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(4), 1331-1336. doi: 10.1073/pnas.0606718104 PMID: 17227854
  22. Sen, M.; Thomas, S.M.; Kim, S.; Yeh, J.I.; Ferris, R.L.; Johnson, J.T.; Duvvuri, U.; Lee, J.; Sahu, N.; Joyce, S.; Freilino, M.L.; Shi, H.; Li, C.; Ly, D.; Rapireddy, S.; Etter, J.P.; Li, P.K.; Wang, L.; Chiosea, S.; Seethala, R.R.; Gooding, W.E.; Chen, X.; Kaminski, N.; Pandit, K.; Johnson, D.E.; Grandis, J.R. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov., 2012, 2(8), 694-705. doi: 10.1158/2159-8290.CD-12-0191 PMID: 22719020
  23. Farahmand, L.; Darvishi, B.; Majidzadeh-A, K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides. Drug Deliv., 2017, 24(1), 1249-1261. doi: 10.1080/10717544.2017.1370511 PMID: 28870118
  24. Kiomy Osako, M.; Nakagami, H.; Morishita, R. Modification of decoy oligodeoxynucleotides to achieve the stability and therapeutic efficacy. Curr. Top. Med. Chem., 2012, 12(15), 1603-1607. doi: 10.2174/156802612803531397 PMID: 22762556
  25. Kuratsukuri, K.; Sugimura, K.; Harimoto, K.; Kawashima, H.; Kishimoto, T. Decoy of androgen-responsive element induces apoptosis in LNCaP cells. Prostate, 1999, 41(2), 121-126. doi: 10.1002/(SICI)1097-0045(19991001)41:23.0.CO;2-Q PMID: 10477908
  26. Lin, D.L.; Tarnowski, C.P.; Zhang, J.; Dai, J.; Rohn, E.; Patel, A.H.; Morris, M.D.; Keller, E.T. Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate, 2001, 47(3), 212-221. doi: 10.1002/pros.1065 PMID: 11351351
  27. Zhang, J.; Dai, J.; Qi, Y.; Lin, D.L.; Smith, P.; Strayhorn, C.; Mizokami, A.; Fu, Z.; Westman, J.; Keller, E.T. Osteoprotegerin inhibits prostate cancer–induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest., 2001, 107(10), 1235-1244. doi: 10.1172/JCI11685 PMID: 11375413
  28. Zhang, P.; Zhang, J.; Young, C.Y.; Kao, P.C.; Chen, W.; Jiang, A.; Zhang, L.; Guo, Q. Decoy androgen-responsive element DNA can inhibit androgen receptor transactivation of the PSA promoter gene. Ann. Clin. Lab. Sci., 2005, 35(3), 278-284. PMID: 16081584
  29. Polytarchou, C.; Hatziapostolou, M.; Papadimitriou, E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J. Biol. Chem., 2005, 280(49), 40428-40435. doi: 10.1074/jbc.M505120200 PMID: 16199533
  30. Lin, J.; Lalani, A.S.; Harding, T.C.; Gonzalez, M.; Wu, W.W.; Luan, B.; Tu, G.H.; Koprivnikar, K.; VanRoey, M.J.; He, Y.; Alitalo, K.; Jooss, K. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res., 2005, 65(15), 6901-6909. doi: 10.1158/0008-5472.CAN-05-0408 PMID: 16061674
  31. Jiang, A.L.; Hu, X.Y.; Zhang, P.J.; He, M.L.; Kong, F.; Liu, Z.F.; Yuan, H.Q.; Zhang, J.Y. Up-regulation of NKX3.1 expression and inhibition of LNCaP cell proliferation induced by an inhibitory element decoy. Acta Biochim. Biophys. Sin. (Shanghai), 2005, 37(5), 335-340. doi: 10.1111/j.1745-7270.2005.00047.x PMID: 15880262
  32. Chanda, D.; Isayeva, T.; Kumar, S.; Hensel, J.A.; Sawant, A.; Ramaswamy, G.; Siegal, G.P.; Beatty, M.S.; Ponnazhagan, S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis. Clin. Cancer Res., 2009, 15(23), 7175-7185. doi: 10.1158/1078-0432.CCR-09-1938 PMID: 19920103
  33. Fang, Y.; Sun, H.; Zhai, J.; Zhang, Y.; Yi, S.; Hao, G.; Wang, T. Antitumor activity of NF-kB decoy oligodeoxynucleotides in a prostate cancer cell line. Asian Pac. J. Cancer Prev., 2011, 12(10), 2721-2726. PMID: 22320981
  34. Hatano, K.; Miyamoto, Y.; Nonomura, N.; Kaneda, Y. Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-κB-dependent transcriptional control of α2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int. J. Cancer, 2011, 129(8), 1838-1847. doi: 10.1002/ijc.25860 PMID: 21165949
  35. Myung, J.K.; Wang, G.; Chiu, H.H.L.; Wang, J.; Mawji, N.R.; Sadar, M.D. Inhibition of androgen receptor by decoy molecules delays progression to castration-recurrent prostate cancer. PLoS One, 2017, 12(3), e0174134. doi: 10.1371/journal.pone.0174134 PMID: 28306720
  36. Hebbar, N.; Burikhanov, R.; Shukla, N.; Qiu, S.; Zhao, Y.; Elenitoba-Johnson, K.S.J.; Rangnekar, V.M. A naturally generated decoy of the prostate apoptosis response-4 protein overcomes therapy resistance in tumors. Cancer Res., 2017, 77(15), 4039-4050. doi: 10.1158/0008-5472.CAN-16-1970 PMID: 28625975
  37. Younis, N.K.; Ghoubaira, J.A.; Bassil, E.P.; Tantawi, H.N.; Eid, A.H. Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine, 2021, 36, 102433. doi: 10.1016/j.nano.2021.102433 PMID: 34171467
  38. Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive tools to treat colorectal cancer. Semin. Cancer Biol., 2022, 86(Pt 2), 1-13. doi: 10.1016/j.semcancer.2022.08.006 PMID: 36028154
  39. Younis, N.K.; Yassine, H.M.; Eid, A.H. Nanomedicine for Cancer. Curr. Med. Chem., 2022. PMID: 36579388

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024