Crosstalk between Oxidative Stress and Inflammation Induced by Ionizing Radiation in Healthy and Cancerous Cells


Citar

Texto integral

Resumo

Radiotherapy (RT) is a unique modality in cancer treatment with no replacement in many cases and uses a tumoricidal dose of various ionizing radiation (IR) types to kill cancer cells. It causes oxidative stress through reactive oxygen species (ROS) production or the destruction of antioxidant systems. On the other hand, RT stimulates the immune system both directly and indirectly by releasing danger signals from stress-exposed and dying cells. Oxidative stress and inflammation are two reciprocal and closely related mechanisms, one induced and involved by the other. ROS regulates the intracellular signal transduction pathways, which participate in the activation and expression of pro-inflammatory genes. Reciprocally, inflammatory cells release ROS and immune system mediators during the inflammation process, which drive the induction of oxidative stress. Oxidative stress or inflammation-induced damages can result in cell death (CD) or survival mechanisms that may be destructive for normal cells or beneficial for cancerous cells. The present study has focused on the radioprotection of those agents with binary effects of antioxidant and anti-inflammatory mechanisms IR-induced CD.

Sobre autores

Mohsen Mohammadgholi

Department of Radiopharmacy, Faculty of Pharmacy,, Mazandaran University of Medical Sciences

Email: info@benthamscience.net

Seyed Hosseinimehr

Department of Radiopharmacy, Faculty of Pharmacy,, Mazandaran University of Medical Sciences

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Hulvat, M.C. Cancer incidence and trends. Surg. Clin. North Am., 2020, 100(3), 469-481. doi: 10.1016/j.suc.2020.01.002 PMID: 32402294
  2. Yahya, E.B.; Alqadhi, A.M. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci., 2021, 269, 119087. doi: 10.1016/j.lfs.2021.119087 PMID: 33476633
  3. Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54, 101350. doi: 10.1016/j.jddst.2019.101350
  4. Ural, K.; Isa, C. Toxicology; Elsevier, 2021, pp. 233-241.
  5. Nuszkiewicz, J.; Woźniak, A.; Szewczyk-Golec, K. Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int. J. Mol. Sci., 2020, 21(16), 5804. doi: 10.3390/ijms21165804 PMID: 32823530
  6. Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst., 2013, 105(4), 256-265. doi: 10.1093/jnci/djs629 PMID: 23291374
  7. Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov., 2009, 3(1), 73-80. doi: 10.2174/187221309787158371 PMID: 19149749
  8. Krylatov, A.V.; Maslov, L.N.; Voronkov, N.S.; Boshchenko, A.A.; Popov, S.V.; Gomez, L.; Wang, H.; Jaggi, A.S.; Downey, J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev., 2018, 14(4), 290-300. doi: 10.2174/1573403X14666180702152436 PMID: 29962348
  9. Liu, R.; Bian, Y.; Liu, L.; Liu, L.; Liu, X.; Ma, S. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (Review). Int. J. Mol. Med., 2022, 49(5), 65. doi: 10.3892/ijmm.2022.5121 PMID: 35293589
  10. Raviraj, J.; Bokkasam, V.; Kumar, V.; Reddy, U.; Suman, V. Radiosensitizers, radioprotectors, and radiation mitigators. Indian J. Dent. Res., 2014, 25(1), 83-90. doi: 10.4103/0970-9290.131142 PMID: 24748306
  11. Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res., 2018, 41(11), 1033-1050. doi: 10.1007/s12272-018-1083-6 PMID: 30361949
  12. Laube, M.; Kniess, T.; Pietzsch, J. Development of antioxidant COX-2 inhibitors as radioprotective agents for radiation therapy-a hypothesis-driven review. Antioxidants, 2016, 5(2), 14. doi: 10.3390/antiox5020014 PMID: 27104573
  13. Hall, E.J.; Giaccia, A.J. Radiobiology for the radiologist. Springer, 2018.
  14. Shimizu, S.; Konishi, A.; Nishida, Y.; Mizuta, T.; Nishina, H.; Yamamoto, A.; Tsujimoto, Y. Involvement of JNK in the regulation of autophagic cell death. Oncogene, 2010, 29(14), 2070-2082. doi: 10.1038/onc.2009.487 PMID: 20101227
  15. Duprez, L.; Wirawan, E.; Berghe, T.V.; Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect., 2009, 11(13), 1050-1062. doi: 10.1016/j.micinf.2009.08.013 PMID: 19733681
  16. Yu, X.; He, S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol. J., 2016, 13(1), 77. doi: 10.1186/s12985-016-0528-0 PMID: 27154074
  17. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: recommendations of the Nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
  18. Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ., 2009, 16(1), 3-11. doi: 10.1038/cdd.2008.150 PMID: 18846107
  19. van Doorn, W.G. Classes of programmed cell death in plants, compared to those in animals. J. Exp. Bot., 2011, 62(14), 4749-4761. doi: 10.1093/jxb/err196 PMID: 21778180
  20. Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741. doi: 10.1016/j.cell.2011.10.026 PMID: 22078875
  21. Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12. doi: 10.1002/path.2697 PMID: 20225336
  22. Bozhkov, P.V. Plant autophagy: Mechanisms and functions. J. Exp. Bot., 2018, 69(6), 1281-1285. doi: 10.1093/jxb/ery070 PMID: 29547996
  23. Pollack, J.; Harris, S.; Marten, M. Autophagy in filamentous fungi. Fungal Genet. Biol., 2009, 46(1), 1-8. doi: 10.1016/j.fgb.2008.10.010 PMID: 19010432
  24. Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; Gottlieb, E.; Green, D.R.; Hengartner, M.O.; Kepp, O.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Lu, X.; Madeo, F.; Malorni, W.; Mehlen, P.; Nuñez, G.; Peter, M.E.; Piacentini, M.; Rubinsztein, D.C.; Shi, Y.; Simon, H-U.; Vandenabeele, P.; White, E.; Yuan, J.; Zhivotovsky, B.; Melino, G.; Kroemer, G. Molecular definitions of cell death subroutines: Recommendations of the nomenclature committee on cell death 2012. Cell Death Differ., 2012, 19(1), 107-120. doi: 10.1038/cdd.2011.96 PMID: 21760595
  25. Proskuryakov, S.Y.; Konoplyannikov, A.G.; Gabai, V.L. Necrosis: A specific form of programmed cell death? Exp. Cell Res., 2003, 283(1), 1-16. doi: 10.1016/S0014-4827(02)00027-7 PMID: 12565815
  26. Khalid, N.; Azimpouran, M. Necrosis. Treasure Island (FL). StatPearls Publishing, 2023.
  27. Galluzzi, L.; Maiuri, M.C.; Vitale, I.; Zischka, H.; Castedo, M.; Zitvogel, L.; Kroemer, G. Cell death modalities: Classification and pathophysiological implications. Cell Death Differ., 2007, 14(7), 1237-1243. doi: 10.1038/sj.cdd.4402148 PMID: 17431418
  28. Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol., 2020, 8, 41. doi: 10.3389/fcell.2020.00041 PMID: 32117972
  29. Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199. doi: 10.7150/ijms.3635 PMID: 22408567
  30. Kim, B.; Hong, Y.; Lee, S.; Liu, P.; Lim, J.; Lee, Y.; Lee, T.; Chang, K.; Hong, Y. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci., 2015, 16(11), 26880-26913. doi: 10.3390/ijms161125991 PMID: 26569225
  31. Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular stress responses in radiotherapy. Cells, 2019, 8(9), 1105. doi: 10.3390/cells8091105 PMID: 31540530
  32. Vaes, R.D.W.; Hendriks, L.E.L.; Vooijs, M.; De Ruysscher, D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells, 2021, 10(4), 930. doi: 10.3390/cells10040930 PMID: 33920544
  33. Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci., 2016, 17(1), 102. doi: 10.3390/ijms17010102 PMID: 26784176
  34. Corre, I.; Guillonneau, M.; Paris, F. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int. J. Mol. Sci., 2013, 14(11), 22678-22696. doi: 10.3390/ijms141122678 PMID: 24252908
  35. Chaurasia, M.; Bhatt, A.N.; Das, A.; Dwarakanath, B.S.; Sharma, K. Radiation-induced autophagy: Mechanisms and consequences. Free Radic. Res., 2016, 50(3), 273-290. doi: 10.3109/10715762.2015.1129534 PMID: 26764568
  36. Desai, R. Cell death. Available from: https://drrajivdesaimd.com/2014/01/01/cell-death/
  37. Manning, G.; Tichý, A.; Sirák, I.; Badie, C. Radiotherapy-associated long-term modification of expression of the inflammatory biomarker genes ARG1, BCL2L1, and MYC. Front. Immunol., 2017, 8, 412. doi: 10.3389/fimmu.2017.00412 PMID: 28443095
  38. Gong, Y.; Fan, Z.; Luo, G.; Yang, C.; Huang, Q.; Fan, K.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. The role of necroptosis in cancer biology and therapy. Mol. Cancer, 2019, 18(1), 100. doi: 10.1186/s12943-019-1029-8 PMID: 31122251
  39. Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372. doi: 10.1007/s13277-010-0042-8 PMID: 20490962
  40. Vitale, I.; Galluzzi, L.; Castedo, M.; Kroemer, G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol., 2011, 12(6), 385-392. doi: 10.1038/nrm3115 PMID: 21527953
  41. Vakifahmetoglu, H.; Olsson, M.; Zhivotovsky, B. Death through a tragedy: Mitotic catastrophe. Cell Death Differ., 2008, 15(7), 1153-1162. doi: 10.1038/cdd.2008.47 PMID: 18404154
  42. He, X.; Yang, A.; McDonald, D.G.; Riemer, E.C.; Vanek, K.N.; Schulte, B.A.; Wang, G.Y. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget, 2017, 8(41), 69797-69807. doi: 10.18632/oncotarget.19267 PMID: 29050242
  43. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol., 2013, 75(1), 685-705. doi: 10.1146/annurev-physiol-030212-183653 PMID: 23140366
  44. Wang, G.; Cheng, X.; Zhang, J.; Liao, Y.; Jia, Y.; Qing, C. Possibility of inducing tumor cell senescence during therapy (Review). Oncol. Lett., 2021, 22(1), 496. doi: 10.3892/ol.2021.12757 PMID: 33981358
  45. Kwon, S.; Ko, H.; You, D.G.; Kataoka, K.; Park, J.H. Nanomedicines for reactive oxygen species mediated approach: An emerging paradigm for cancer treatment. Acc. Chem. Res., 2019, 52(7), 1771-1782. doi: 10.1021/acs.accounts.9b00136 PMID: 31241894
  46. del Río, L.A.; López-Huertas, E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol., 2016, 57(7), pcw076. doi: 10.1093/pcp/pcw076 PMID: 27081099
  47. Martínez, M.C.; Andriantsitohaina, R. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease. Antioxid. Redox Signal., 2009, 11(3), 669-702. doi: 10.1089/ars.2007.1993 PMID: 19014277
  48. Doshi, S.B.; Khullar, K.; Sharma, R.K.; Agarwal, A. Role of reactive nitrogen species in male infertility. Reprod. Biol. Endocrinol., 2012, 10(1), 109. doi: 10.1186/1477-7827-10-109 PMID: 23241221
  49. Bhattacharya, S. In Free radicals in human health and disease. Springer, 2015, 17-29. doi: 10.1007/978-81-322-2035-0_2
  50. Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
  51. Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 2018, 122(6), 877-902. doi: 10.1161/CIRCRESAHA.117.311401 PMID: 29700084
  52. Salim, S. Oxidative stress and psychological disorders. Curr. Neuropharmacol., 2014, 12(2), 140-147. doi: 10.2174/1570159X11666131120230309 PMID: 24669208
  53. McKelvey, K.J.; Hudson, A.L.; Back, M.; Eade, T.; Diakos, C.I. Radiation, inflammation and the immune response in cancer. Mamm. Genome, 2018, 29(11-12), 843-865. doi: 10.1007/s00335-018-9777-0 PMID: 30178305
  54. Wang, Y.; Qi, H.; Liu, Y.; Duan, C.; Liu, X.; Xia, T.; Chen, D.; Piao, H.; Liu, H.X. The double-edged roles of ROS in cancer prevention and therapy. Theranostics, 2021, 11(10), 4839-4857. doi: 10.7150/thno.56747 PMID: 33754031
  55. Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735. doi: 10.3390/biom9110735 PMID: 31766246
  56. Yahyapour, R.; Amini, P.; Rezapour, S.; Cheki, M.; Rezaeyan, A.; Farhood, B.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Radiation-induced inflammation and autoimmune diseases. Mil. Med. Res., 2018, 5(1), 9. doi: 10.1186/s40779-018-0156-7 PMID: 29554942
  57. Wei, J.; Wang, B.; Wang, H.; Meng, L.; Zhao, Q.; Li, X.; Xin, Y.; Jiang, X. Radiation-induced normal tissue damage: Oxidative stress and epigenetic mechanisms. Oxid Med Cell Longev, 2019, 2019, 3010342. doi: 10.1155/2019/3010342
  58. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218. doi: 10.18632/oncotarget.23208 PMID: 29467962
  59. Kato, J.; Svensson, C.I. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog. Mol. Biol. Transl. Sci., 2015, 131, 251-279. doi: 10.1016/bs.pmbts.2014.11.014 PMID: 25744676
  60. Neher, M.D.; Weckbach, S.; Flierl, M.A.; Huber-Lang, M.S.; Stahel, P.F. Molecular mechanisms of inflammation and tissue injury after major trauma-is complement the "bad guy"? J. Biomed. Sci., 2011, 18(1), 90. doi: 10.1186/1423-0127-18-90 PMID: 22129197
  61. Mavragani, I.V.; Laskaratou, D.A.; Frey, B.; Candéias, S.M.; Gaipl, U.S.; Lumniczky, K.; Georgakilas, A.G. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol. Res., 2016, 5(1), 12-33. doi: 10.1039/c5tx00222b PMID: 30090323
  62. Ashley, N.T.; Weil, Z.M.; Nelson, R.J. Inflammation: Mechanisms, costs, and natural variation. Annu. Rev. Ecol. Evol. Syst., 2012, 43(1), 385-406. doi: 10.1146/annurev-ecolsys-040212-092530
  63. Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34. doi: 10.3109/08830185.2010.529976 PMID: 21235323
  64. Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112. doi: 10.1038/s41577-019-0215-7 PMID: 31558839
  65. Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in inflammatory disease. Int. J. Mol. Sci., 2019, 20(23), 6008. doi: 10.3390/ijms20236008 PMID: 31795299
  66. Brooks, A.J.; Dehkhoda, F.; Kragelund, B.B. Cytokine receptors. Princ Endocrinol Horm Action, 2016. doi: 10.1007/978-3-319-27318-1_8-1
  67. Singh, V.; Gupta, D.; Arora, R. NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries, 2015, 3(1), e35. doi: 10.15190/d.2015.27 PMID: 32309561
  68. Lingappan, K. NF-κB in oxidative stress. Curr. Opin. Toxicol., 2018, 7, 81-86. doi: 10.1016/j.cotox.2017.11.002 PMID: 29862377
  69. Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469. doi: 10.3389/fimmu.2021.716469 PMID: 34434197
  70. Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol., 2017, 17(9), 545-558. doi: 10.1038/nri.2017.52 PMID: 28580957
  71. Patel, Y.; Heyward, C.A.; White, M.R.H.; Kell, D.B. Predicting the points of interaction of small molecules in the NF-κB pathway. BMC Syst. Biol., 2011, 5(1), 32. doi: 10.1186/1752-0509-5-32 PMID: 21342508
  72. Munshi, A.; Ramesh, R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer, 2013, 4(9-10), 401-408. doi: 10.1177/1947601913485414 PMID: 24349638
  73. Dent, P.; Yacoub, A.; Fisher, P.B.; Hagan, M.P.; Grant, S. MAPK pathways in radiation responses. Oncogene, 2003, 22(37), 5885-5896. doi: 10.1038/sj.onc.1206701 PMID: 12947395
  74. Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 4(11), a011254. doi: 10.1101/cshperspect.a011254 PMID: 23125017
  75. Harrison, D.A. The JAK/STAT Pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(3), a011205. doi: 10.1101/cshperspect.a011205 PMID: 22383755
  76. Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal., 2017, 15(1), 23. doi: 10.1186/s12964-017-0177-y PMID: 28637459
  77. Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210. doi: 10.1016/j.intimp.2020.106210 PMID: 31972425
  78. Hin Tang, J.J.; Hao Thng, D.K.; Lim, J.J.; Toh, T.B. JAK/STAT signaling in hepatocellular carcinoma. Hepat. Oncol., 2020, 7(1), HEP18. doi: 10.2217/hep-2020-0001 PMID: 32273976
  79. Deorukhkar, A.; Krishnan, S. Targeting inflammatory pathways for tumor radiosensitization. Biochem. Pharmacol., 2010, 80(12), 1904-1914. doi: 10.1016/j.bcp.2010.06.039 PMID: 20599771
  80. Bharadwaj, U.; Kasembeli, M.M.; Robinson, P.; Tweardy, D.J. Targeting Janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution. Pharmacol. Rev., 2020, 72(2), 486-526. doi: 10.1124/pr.119.018440 PMID: 32198236
  81. Hein, A.L.; Ouellette, M.M.; Yan, Y. Radiation-induced signaling pathways that promote cancer cell survival (Review). Int. J. Oncol., 2014, 45(5), 1813-1819. doi: 10.3892/ijo.2014.2614 PMID: 25174607
  82. Xu, F.; Na, L.; Li, Y.; Chen, L. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54. doi: 10.1186/s13578-020-00416-0 PMID: 32266056
  83. Padmanabhan, R.; Meskin, N.; Al Moustafa, A.E. Mathematical Models of Cancer and Different Therapies; Springer, 2021, pp. 123-133. doi: 10.1007/978-981-15-8640-8_6
  84. Rosenblatt, E.; Zubizarreta, E. Radiotherapy in cancer care: Facing the global challenge. Int. Atom. Energy Agency Vienna, 2017.
  85. Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci., 2014, 1, 24. doi: 10.3389/fmolb.2014.00024 PMID: 25988165
  86. Hubenak, J.R.; Zhang, Q.; Branch, C.D.; Kronowitz, S.J. Mechanisms of injury to normal tissue after radiotherapy: a review. Plast. Reconstr. Surg., 2014, 133(1), 49e-56e. doi: 10.1097/01.prs.0000440818.23647.0b PMID: 24374687
  87. Formenti, S.C.; Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol., 2009, 10(7), 718-726. doi: 10.1016/S1470-2045(09)70082-8 PMID: 19573801
  88. Ahmad, S.S.; Duke, S.; Jena, R.; Williams, M.V.; Burnet, N.G. Advances in radiotherapy. BMJ, 2012, 345(dec04 1), e7765. doi: 10.1136/bmj.e7765 PMID: 23212681
  89. Khan, H.A.; Alhomida, A.S. A review of the logistic role of l-carnitine in the management of radiation toxicity and radiotherapy side effects. J. Appl. Toxicol., 2011, 31(8), 707-713. doi: 10.1002/jat.1716 PMID: 21818761
  90. Chen, H.H.W.; Kuo, M.T. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 2017, 8(37), 62742-62758. doi: 10.18632/oncotarget.18409 PMID: 28977985
  91. Braunstein, S.; Nakamura, J.L. Radiotherapy-induced malignancies: Review of clinical features, pathobiology, and evolving approaches for mitigating risk. Front. Oncol., 2013, 3, 73. doi: 10.3389/fonc.2013.00073 PMID: 23565507
  92. Vilalta, M.; Rafat, M.; Graves, E.E. Effects of radiation on metastasis and tumor cell migration. Cell. Mol. Life Sci., 2016, 73(16), 2999-3007. doi: 10.1007/s00018-016-2210-5 PMID: 27022944
  93. Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer, 2015, 15(7), 409-425. doi: 10.1038/nrc3958 PMID: 26105538
  94. Wang, J.; Wang, H.; Qian, H. Biological effects of radiation on cancer cells. Mil. Med. Res., 2018, 5(1), 20. doi: 10.1186/s40779-018-0167-4 PMID: 29958545
  95. Majeed, H.; Gupta, V. Adverse effects of radiation therapy. StatPearls, 2020.
  96. Gieringer, M.; Gosepath, J.; Naim, R. Radiotherapy and wound healing: Principles, management and prospects (Review). Oncol. Rep., 2011, 26(2), 299-307. doi: 10.3892/or.2011.1319 PMID: 21617873
  97. Tang, L.; Wei, F.; Wu, Y.; He, Y.; Shi, L.; Xiong, F.; Gong, Z.; Guo, C.; Li, X.; Deng, H.; Cao, K.; Zhou, M.; Xiang, B.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res., 2018, 37(1), 87. doi: 10.1186/s13046-018-0758-7 PMID: 29688867
  98. Galeaz, C.; Totis, C.; Bisio, A. Radiation resistance: A matter of transcription factors. Front. Oncol., 2021, 11, 662840. doi: 10.3389/fonc.2021.662840 PMID: 34141616
  99. Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167. doi: 10.1089/ars.2012.5149 PMID: 23991888
  100. Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006 PMID: 20840865
  101. Cheki, M.; Yahyapour, R.; Farhood, B.; Rezaeyan, A.; Shabeeb, D.; Amini, P.; Rezapoor, S.; Najafi, M. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization. Curr. Mol. Pharmacol., 2018, 11(3), 173-183. doi: 10.2174/1874467211666180219102520 PMID: 29468988
  102. Lee, T.K.; Stupans, I. Radioprotection: The non-steroidal anti-inflammatory drugs (NSAIDs) and prostaglandins. J. Pharm. Pharmacol., 2010, 54(11), 1435-1445. doi: 10.1211/00223570254 PMID: 12495545
  103. Khayyal, M.T.; El-Ghazaly, M.A.; El-Hazek, R.M.; Nada, A.S. The effects of celecoxib, a COX-2 selective inhibitor, on acute inflammation induced in irradiated rats. Inflammopharmacology, 2009, 17(5), 255-266. doi: 10.1007/s10787-009-0014-z PMID: 19798548
  104. Demirel, C.; Kilciksiz, S.C.; Gurgul, S.; Erdal, N.; Yigit, S.; Tamer, L.; Ayaz, L. Inhibition of radiation-induced oxidative damage in the lung tissue: May acetylsalicylic acid have a positive role? Inflammation, 2016, 39(1), 158-165. doi: 10.1007/s10753-015-0234-x PMID: 26276129
  105. Hosseinimehr, S.J.; Nobakht, R.; Ghasemi, A.; Pourfallah, T.A. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat. Oncol. J., 2015, 33(3), 256-260. doi: 10.3857/roj.2015.33.3.256 PMID: 26484310
  106. Alok, A.; Adhikari, J.S.; Chaudhury, N.K. Radioprotective role of clinical drug diclofenac sodium. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2013, 755(2), 156-162. doi: 10.1016/j.mrgentox.2013.06.015 PMID: 23827778
  107. Yamasaki, M.C.; Nejaim, Y.; Roque-Torres, G.D.; Freitas, D.Q. Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz. Dent. J., 2017, 28(2), 249-255. doi: 10.1590/0103-6440201701271 PMID: 28492757
  108. Dokmeci, D.; Akpolat, M.; Aydogdu, N.; Uzal, C.; Turan, N.F. The modifying effect of ibuprofen on total body irradiation-induced elevation of oxidative reactions in male hamsters. Acta Med. Biol., 2004, 52(2), 67-72.
  109. Nishiguchi, I.; Furuta, Y.; Hunter, N.; Murray, D.; Milas, L. Radioprotection of hematopoietic tissues in mice by indomethacin. Radiat. Res., 1990, 122(2), 188-192. doi: 10.2307/3577605 PMID: 2159648
  110. Hofmann, B.; Steinhilber, D. 5-Lipoxygenase inhibitors: A review of recent patents (2010 – 2012). Expert Opin. Ther. Pat., 2013, 23(7), 895-909. doi: 10.1517/13543776.2013.791678 PMID: 23600432
  111. Peixoto, C.A.; Silva, B.S. Anti-inflammatory effects of diethylcarbamazine: A review. Eur. J. Pharmacol., 2014, 734, 35-41. doi: 10.1016/j.ejphar.2014.03.046 PMID: 24726556
  112. Farzipour, S.; Amiri, F.T.; Mihandoust, E.; Shaki, F.; Noaparast, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J. Bioenerg. Biomembr., 2020, 52(1), 39-46. doi: 10.1007/s10863-019-09820-9 PMID: 31853753
  113. Torabizadeh, S.A.; Rezaeifar, M.; Jomehzadeh, A.; Nabizadeh Haghighi, F.; Ansari, M. Radioprotective potential of sulindac sulfide to prevent DNA damage due to ionizing radiation. Drug Des. Devel. Ther., 2019, 13, 4127-4134. doi: 10.2147/DDDT.S218022 PMID: 31827319
  114. Hosseinimehr, S.; Fathi, M.; Ghasemi, A.; Shiadeh, S.R.; Pourfallah, T. Celecoxib mitigates genotoxicity induced by ionizing radiation in human blood lymphocytes. Res. Pharm. Sci., 2017, 12(1), 82-87. doi: 10.4103/1735-5362.199051 PMID: 28255318
  115. Hormati, A.; Ahmadpour, S.; Afkhami Ardekani, M.; Khodadust, F.; Refahi, S. Radioprotective effects of montelukast, a selective leukotriene CysLT1 receptor antagonist, against nephrotoxicity induced by gamma radiation in mice. J. Biochem. Mol. Toxicol., 2020, 34(6), e22479. doi: 10.1002/jbt.22479 PMID: 32125029
  116. Tokat, A.O.; Akbulut, A.; Billur, D.; Koca, G.; Bayram, P.; Kuru, S.; Karasu, S.; Aydogmus, S.; Cakmak, H.; Ozmert, S.; Korkmaz, M. Montelukast attenuates radioactive I131-induced pulmonary damage on rats. Int. J. Radiat. Biol., 2018, 94(6), 542-550. doi: 10.1080/09553002.2018.1466065 PMID: 29659324
  117. Koca, G.; Gültekin, S.S.; Han, Ü.; Kuru, S.; Demirel, K.; Korkmaz, M. The efficacy of montelukast as a protective agent against 131I-induced salivary gland damage in rats. Nucl. Med. Commun., 2013, 34(5), 507-517. doi: 10.1097/MNM.0b013e32835ffecd PMID: 23478587
  118. Di Raimondo, D.; Tuttolomondo, A.; Buttà, C.; Miceli, S.; Licata, G.; Pinto, A. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr. Pharm. Des., 2012, 18(28), 4385-4413. doi: 10.2174/138161212802481282 PMID: 22283779
  119. Robbins, M.E.; Diz, D.I. Pathogenic role of the renin–angiotensin system in modulating radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys., 2006, 64(1), 6-12. doi: 10.1016/j.ijrobp.2005.08.033 PMID: 16377409
  120. Hitomi, H.; Kiyomoto, H.; Nishiyama, A. Angiotensin II and oxidative stress. Curr. Opin. Cardiol., 2007, 22(4), 311-315. doi: 10.1097/HCO.0b013e3281532b53 PMID: 17556883
  121. Benzie, I.F.F.; Tomlinson, B. Antioxidant power of angiotensin-converting enzyme inhibitors in vitro. Br. J. Clin. Pharmacol., 1998, 45(2), 168-169. doi: 10.1046/j.1365-2125.1998.00664.x PMID: 9491832
  122. Bhuyan, B.J.; Mugesh, G. Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org. Biomol. Chem., 2011, 9(5), 1356-1365. doi: 10.1039/C0OB00823K PMID: 21186397
  123. Hosseinimehr, S.J.; Mahmoudzadeh, A.; Akhlagpour, S. Captopril protects mice bone marrow cells against genotoxicity induced by gamma irradiation. Cell Biochem. Funct., 2007, 25(4), 389-394. doi: 10.1002/cbf.1311 PMID: 16447141
  124. Davis, T.A.; Landauer, M.R.; Mog, S.R.; Barshishat-Kupper, M.; Zins, S.R.; Amare, M.F.; Day, R.M. Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Exp. Hematol., 2010, 38(4), 270-281. doi: 10.1016/j.exphem.2010.01.004 PMID: 20116413
  125. Rittase, W.B.; McCart, E.A.; Muir, J.M.; Bouten, R.M.; Slaven, J.E.; Mungunsukh, O.; Bylicky, M.A.; Wilkins, W.L.; Lee, S.H.; Gudmundsson, K.O.; Di Pucchio, T.; Olsen, C.H.; Du, Y.; Day, R.M. Effects of captopril against radiation injuries in the Göttingen minipig model of hematopoietic-acute radiation syndrome. PLoS One, 2021, 16(8), e0256208. doi: 10.1371/journal.pone.0256208 PMID: 34449797
  126. Yoon, S.-C.; Park, J.-M.; Jang, H.-S.; Shinn, K.-S.; Bahk, Y.-W. Radioprotective effect of captopril on the mouse jejunal mucosa. Int. J. Radiat. Oncol. Biol. Phys., 1994, 30(4), 873-878. doi: 10.1016/0360-3016(94)90363-8 PMID: 7960990
  127. Day, R.M.; Davis, T.A.; Barshishat-Kupper, M.; McCart, E.A.; Tipton, A.J.; Landauer, M.R. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. Int. Immunopharmacol., 2013, 15(2), 348-356. doi: 10.1016/j.intimp.2012.12.029 PMID: 23328620
  128. Charrier, S.; Michaud, A.; Badaoui, S.; Giroux, S.; Ezan, E.; Sainteny, F.; Corvol, P.; Vainchenker, W. Inhibition of angiotensin I–converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells. Blood, 2004, 104(4), 978-985. doi: 10.1182/blood-2003-11-3828 PMID: 15105290
  129. Fooladi, M.; Cheki, M.; Shirazi, A.; Sheikhzadeh, P.; Amirrashedi, M.; Ghahramani, F.; Khoobi, M. Histopathological evaluation of protective effect of telmisartan against radiation-induced bone marrow injury. J. Biomed. Phys. Eng., 2021, 12(3), 277-284. PMID: 35698535
  130. Markowitz, J.F. Pediatric Gastrointestinal and Liver Disease W.B. Saunders: Saint Louis, 2011; pp. 490-504..
  131. Pearson, D.C.; Jourd’Heuil, D.; Meddings, J.B. The anti-oxidant properties of 5-aminosalicylic acid. Free Radic. Biol. Med., 1996, 21(3), 367-373. doi: 10.1016/0891-5849(96)00031-7 PMID: 8855448
  132. Koelink, P.J. 5-ASA-colorectal cancer-cell death: an intriguing threesome; Leiden University, 2010.
  133. Mantena, S.K.; Unnikrishnan, M.K.; Joshi, R.; Radha, V.; Devi, P.U.; Mukherjee, T. In vivo radioprotection by 5-aminosalicylic acid. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2008, 650(1), 63-79. doi: 10.1016/j.mrgentox.2007.10.005 PMID: 18155638
  134. Sudheer Kumar, M.; Unnikrishnan, M.K.; Uma Devi, P. Effect of 5-aminosalicylic acid on radiation-induced micronuclei in mouse bone marrow. Mutat. Res., 2003, 527(1-2), 7-14. doi: 10.1016/S0027-5107(03)00052-6 PMID: 12787909
  135. Hall, S.; Rudrawar, S.; Zunk, M.; Bernaitis, N.; Arora, D.; McDermott, C.; Anoopkumar-Dukie, S. Protection against radiotherapy-induced toxicity. Antioxidants, 2016, 5(3), 22. doi: 10.3390/antiox5030022 PMID: 27399787
  136. Dutta, S.; Wadekar, R.R.; Roy, T. Radioprotective natural products as alternative complements in oncological radiotherapy. Bol. Latinoam. Caribe Plantas Med. Aromat., 2021, 20(2), 101-122. doi: 10.37360/blacpma.21.20.2.9
  137. Mantena, S.K.; Unnikrishnan, M.K.; Uma Devi, P. Radioprotective effect of sulfasalazine on mouse bone marrow chromosomes. Mutagenesis, 2008, 23(4), 285-292. doi: 10.1093/mutage/gen005 PMID: 18353769
  138. Kim, S.W.; Kang, H.J.; Jhon, M.; Kim, J.W.; Lee, J.Y.; Walker, A.J.; Agustini, B.; Kim, J.M.; Berk, M. Statins and inflammation: New therapeutic opportunities in psychiatry. Front. Psychiatry, 2019, 10, 103. doi: 10.3389/fpsyt.2019.00103 PMID: 30890971
  139. Bedi, O.; Dhawan, V.; Sharma, P.L.; Kumar, P. Pleiotropic effects of statins: New therapeutic targets in drug design. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 695-712. doi: 10.1007/s00210-016-1252-4 PMID: 27146293
  140. Davignon, J.; Jacob, R.F.; Mason, R.P. The antioxidant effects of statins. Coron. Artery Dis., 2004, 15(5), 251-258. doi: 10.1097/01.mca.0000131573.31966.34 PMID: 15238821
  141. Fritz, G.; Henninger, C.; Huelsenbeck, J. Potential use of HMG-CoA reductase inhibitors (statins) as radioprotective agents. Br. Med. Bull., 2011, 97(1), 17-26. doi: 10.1093/bmb/ldq044 PMID: 21252099
  142. Talebpour Amiri, F.; Hamzeh, M.; Naeimi, R.A.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of atorvastatin against ionizing radiation-induced nephrotoxicity in mice. Int. J. Radiat. Biol., 2018, 94(2), 106-113. doi: 10.1080/09553002.2018.1420926 PMID: 29268056
  143. Hosseinimehr, S.J.; Izakmehri, M.; Ghasemi, A. In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell. Mol. Biol., 2015, 61(1), 68-71. PMID: 25817349
  144. Naeimi, R.A.; Talebpour Amiri, F.; Khalatbary, A.R.; Ghasemi, A.; Zargari, M.; Ghesemi, M.; Hosseinimehr, S.J. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod. Toxicol., 2017, 72, 115-121. doi: 10.1016/j.reprotox.2017.06.052 PMID: 28668617
  145. Doi, H.; Matsumoto, S.; Odawara, S.; Shikata, T.; Kitajima, K.; Tanooka, M.; Takada, Y.; Tsujimura, T.; Kamikonya, N.; Hirota, S. Pravastatin reduces radiation-induced damage in normal tissues. Exp. Ther. Med., 2017, 13(5), 1765-1772. doi: 10.3892/etm.2017.4192 PMID: 28565765
  146. Yang, H.; Huang, F.; Tao, Y.; Zhao, X.; Liao, L.; Tao, X. Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice. Int. J. Mol. Med., 2017, 40(3), 762-770. doi: 10.3892/ijmm.2017.3047 PMID: 28677744
  147. Sun, X.; Yang, X.; Chen, J.; Ge, X.L.; Qin, Q.; Zhu, H.; Zhang, C.; Xu, L. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice. Drug Des. Devel. Ther., 2016, 10, 2271-2278. doi: 10.2147/DDDT.S105809 PMID: 27471375
  148. Zhao, X.; Yang, H.; Jiang, G.; Ni, M.; Deng, Y.; Cai, J.; Li, Z.; Shen, F.; Tao, X. Simvastatin attenuates radiation-induced tissue damage in mice. J. Radiat. Res., 2014, 55(2), 257-264. doi: 10.1093/jrr/rrt115 PMID: 24105712
  149. Ziegler, V.; Henninger, C.; Simiantonakis, I.; Buchholzer, M.; Ahmadian, M.R.; Budach, W.; Fritz, G. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis., 2017, 8(8), e2978-e2978. doi: 10.1038/cddis.2017.372 PMID: 28796249
  150. El-Batal, A.I.; Thabet, N.M.; Osman, A.; Ghaffar, A.; Azab, K.S. Amelioration of oxidative damage induced in gamma irradiated rats by nano selenium and lovastatin mixture. World Appl. Sci. J., 2012, 19(7), 962-971.
  151. Nübel, T.; Damrot, J.; Roos, W.P.; Kaina, B.; Fritz, G. Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res., 2006, 12(3), 933-939. doi: 10.1158/1078-0432.CCR-05-1903 PMID: 16467108
  152. Xourgia, E.; Tzouganatou, E.M.; Papazafiropoulou, A.; Melidonis, A. Anti-inflammatory properties of antidiabetic agents. World J. Metaanal., 2019, 7(4), 129-141. doi: 10.13105/wjma.v7.i4.129
  153. Hasanpour Dehkordi, A.; Abbaszadeh, A.; Mir, S.; Hasanvand, A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J. Renal Inj. Prev., 2019, 8(1), 54-61. doi: 10.15171/jrip.2019.11
  154. Da, F.; Guo, J.; Yao, L.; Gao, Q.; Jiao, S.; Miao, X.; Liu, J. Pretreatment with metformin protects mice from whole-body irradiation. J. Radiat. Res., 2021, 62(4), 618-625. doi: 10.1093/jrr/rrab012 PMID: 33912960
  155. Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53. doi: 10.2174/1574884713666181025141559 PMID: 30360725
  156. Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32. doi: 10.1016/j.mrgentox.2016.09.001 PMID: 27692296
  157. Liu, H.; Wang, S.; Wu, Z.; Huang, Z.; Chen, W.; Yang, Y.; Cui, J.; Liu, C.; Zhao, H.; Guo, J.; Zhang, P.; Gao, F.; Li, B.; Cai, J. Glibenclamide, a diabetic drug, prevents acute radiation-induced liver injury of mice via up-regulating intracellular ROS and subsequently activating Akt-NF-κB pathway. Oncotarget, 2017, 8(25), 40568-40582. doi: 10.18632/oncotarget.16501 PMID: 28380448
  158. Pouri, M.; Shaghaghi, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of gliclazide as an anti-hyperglycemic agent against genotoxicity induced by ionizing radiation on human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 40-46. doi: 10.2174/1871525717666190524092918 PMID: 31124426
  159. Heliövaara, M.K.; Herz, M.; Teppo, A.M.; Leinonen, E.; Ebeling, P. Pioglitazone has anti-inflammatory effects in patients with Type 2 diabetes. J. Endocrinol. Invest., 2007, 30(4), 292-297. doi: 10.1007/BF03346296 PMID: 17556865
  160. Kazemi, R.; Hosseinimehr, S.J. Radioprotective effect of pioglitazone against genotoxicity induced by ionizing radiation in healthy human lymphocytes. Cardiovasc. Hematol. Agents Med. Chem., 2021, 19(1), 72-75. doi: 10.2174/1871525718666200525005231 PMID: 32448107
  161. Kuruba, V.; Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J., 2018, 36(4), 265-275. doi: 10.3857/roj.2018.00381 PMID: 30630265
  162. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell Longev., 2016, 2016, 7432797. doi: 10.1155/2016/7432797
  163. Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S. Radioprotective role of natural polyphenols: From sources to mechanisms. Anticancer Agents Med. Chem., 2022, 22(1), 30-39. doi: 10.2174/1871520621666210419095829 PMID: 33874875
  164. Faramarzi, S.; Piccolella, S.; Manti, L.; Pacifico, S. Could polyphenols really be a good radioprotective strategy? Molecules, 2021, 26(16), 4969. doi: 10.3390/molecules26164969 PMID: 34443561
  165. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 162750. doi: 10.1155/2013/162750
  166. Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523. doi: 10.1016/j.fitote.2011.01.018 PMID: 21277359
  167. Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584. doi: 10.1016/S0955-2863(02)00208-5 PMID: 12550068
  168. Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042. doi: 10.1021/np9904509 PMID: 10924197
  169. Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124. doi: 10.1016/j.foodchem.2019.125124 PMID: 31288163
  170. Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295. doi: 10.3389/fphar.2019.01295 PMID: 31749703
  171. Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278. doi: 10.1017/S002966511000162X PMID: 20569521
  172. Wang, Q.; Xie, C.; Xi, S.; Qian, F.; Peng, X.; Huang, J.; Tang, F. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage. Molecules, 2020, 25(23), 5719. doi: 10.3390/molecules25235719 PMID: 33287417
  173. Mashhadi, A.B.M. An overview of the cellular mechanisms of flavonoids radioprotective effects. Adv. Pharm. Bull., 2019, 10(1), 13-19. doi: 10.15171/apb.2020.002 PMID: 32002357
  174. Hosseinimehr, S.J.; Ahmadi, A.; Beiki, D.; Habibi, E.; Mahmoudzadeh, A. Protective effects of hesperidin against genotoxicity induced by 99mTc-MIBI in human cultured lymphocyte cells. Nucl. Med. Biol., 2009, 36(7), 863-867. doi: 10.1016/j.nucmedbio.2009.06.002 PMID: 19720298
  175. Hosseinimehr, S.J.; Mahmoudzadeh, A.; Ahmadi, A.; Mohamadifar, S.; Akhlaghpoor, S. Radioprotective effects of hesperidin against genotoxicity induced by -irradiation in human lymphocytes. Mutagenesis, 2009, 24(3), 233-235. doi: 10.1093/mutage/gep001 PMID: 19193695
  176. El-Gazzar, M.G.; Zaher, N.H.; El-Hossary, E.M.; Ismail, A.F.M. Radio-protective effect of some new curcumin analogues. J. Photochem. Photobiol. B, 2016, 162, 694-702. doi: 10.1016/j.jphotobiol.2016.08.002 PMID: 27505300
  177. Tang, F.R.; Loke, W.K.; Wong, P.; Khoo, B.C. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol. Behav., 2017, 175, 37-46. doi: 10.1016/j.physbeh.2017.03.027 PMID: 28341234
  178. Wang, H.; Sim, M.K.; Loke, W.K.; Chinnathambi, A.; Alharbi, S.A.; Tang, F.R.; Sethi, G. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Front. Pharmacol., 2017, 8, 352. doi: 10.3389/fphar.2017.00352 PMID: 28670276
  179. Asadullina, N.; Gudkov, S.; Bruskov, V. Biochemistry and Biophysics. In: Springer Nature BV; , 2012; 442, p. 22.
  180. Najafi, M.; Shirazi, A.; Motevaseli, E.; Rezaeyan, A.H.; Salajegheh, A.; Rezapoor, S. Melatonin as an anti-inflammatory agent in radiotherapy. Inflammopharmacology, 2017, 25(4), 403-413. doi: 10.1007/s10787-017-0332-5 PMID: 28255737
  181. AlMathkour, M.M.; AlSuhaibani, E.S. Protective effect of aspirin on γ radiation-induced sperm malformations in Swiss Albino male mice. Am. J. Life Sci., 2014, 2(4), 205-215. doi: 10.11648/j.ajls.20140204.13
  182. Koca, G.; Yalniz-Akkaya, Z.; Gültekin, S.S.; Yumusak, N.; Demirel, K.; Korkmaz, M.; Atilgan, H.I.; Altiparmak, U.E.; Onal, B.; Ornek, F. Radioprotective effect of montelukast sodium in rat lacrimal glands after radioiodine treatment. Rev. Esp. Med. Nucl. Imagen Mol., 2013, 32(5), 294-300. PMID: 23499122
  183. Atilgan, H.I.; Yumuşak, N.; Sadic, M.; Gultekin, S.S.; Gokhan, K.; Ozyurt, S.; Demirel, K.; Korkmaz, M. Radioprotective effect of montelukast sodium against hepatic radioiodine (131I) toxicity: A histopathological investigation in the rat model. Ankara Univ. Vet. Fak. Derg., 2015, 62(1), 37-43. doi: 10.1501/Vetfak_0000002655
  184. Ostrau, C.; Hülsenbeck, J.; Herzog, M.; Schad, A.; Torzewski, M.; Lackner, K.J.; Fritz, G. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother. Oncol., 2009, 92(3), 492-499. doi: 10.1016/j.radonc.2009.06.020 PMID: 19615773

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024