Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity


Citar

Texto integral

Resumo

Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world’s population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.

Sobre autores

Efthymios Poulios

Department of Food Science and Nutrition, School of the Environmentof Food Science and Nutrition, University of the Aegean

Email: info@benthamscience.net

Stergia Koukounari

Department of Food Science and Nutrition, School of the Environment, University of the Aegean

Email: info@benthamscience.net

Evmorfia Psara

Department of Food Science and Nutrition, School of the Environment,, University of the Aegean

Email: info@benthamscience.net

Georgios Vasios

Department of Food Science and Nutrition, School of the Environment,, University of the Aegean

Email: info@benthamscience.net

Christina Sakarikou

Department of Food Science and Nutrition, School of the Environment,, University of the Aegean

Email: info@benthamscience.net

Constantinos Giaginis

Department of Food Science and Nutrition, School of the Environment,, University of the Aegean

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Barakat, B.; Almeida, M.E.F. Biochemical and immunological changes in obesity. Arch. Biochem. Biophys., 2021, 708, 108951. doi: 10.1016/j.abb.2021.108951 PMID: 34102165
  2. Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. PharmacoEconomics, 2015, 33(7), 673-689. doi: 10.1007/s40273-014-0243-x PMID: 25471927
  3. Jebeile, H.; Kelly, A.S.; O'Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol., 2022, 10(5), 351-365. doi: 10.1016/S2213-8587(22)00047-X
  4. Wallis, N.; Raffan, E. The genetic basis of obesity and related metabolic diseases in humans and companion animals. Genes, 2020, 11(11), 1378. doi: 10.3390/genes11111378 PMID: 33233816
  5. Włodarczyk, M.; Nowicka, G. Obesity, DNA Damage, and development of obesity-related diseases. Int. J. Mol. Sci., 2019, 20(5), 1146. doi: 10.3390/ijms20051146 PMID: 30845725
  6. Chiurazzi, M.; Cozzolino, M.; Orsini, R.C.; Di Maro, M.; Di Minno, M.N.D.; Colantuoni, A. Impact of Genetic variations and epigenetic mechanisms on the risk of obesity. Int. J. Mol. Sci., 2020, 21(23), 9035. doi: 10.3390/ijms21239035 PMID: 33261141
  7. Bouchard, C. Genetics of obesity: What we have learned over decades of research. Obesity, 2021, 29(5), 802-820. doi: 10.1002/oby.23116 PMID: 33899337
  8. Obri, A.; Serra, D.; Herrero, L.; Mera, P. The role of epigenetics in the development of obesity. Biochem. Pharmacol., 2020, 177, 113973. doi: 10.1016/j.bcp.2020.113973 PMID: 32283053
  9. Yin, L.; Zhu, X.; Novák, P.; Zhou, L.; Gao, L.; Yang, M.; Zhao, G.; Yin, K. The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin. Chim. Acta, 2021, 515, 80-89. doi: 10.1016/j.cca.2021.01.001 PMID: 33422492
  10. Wu, D.; Wang, H.; Xie, L.; Hu, F. Cross-Talk between gut microbiota and adipose tissues in obesity and related metabolic diseases. Front. Endocrinol., 2022, 13, 908868. doi: 10.3389/fendo.2022.908868 PMID: 35865314
  11. Song, X.; Wang, L.; Liu, Y.; Zhang, X.; Weng, P.; Liu, L.; Zhang, R.; Wu, Z. The gut microbiota–brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Res. Int., 2022, 153, 110971. doi: 10.1016/j.foodres.2022.110971 PMID: 35227482
  12. Palou, A.; Bonet, M.L. Challenges in obesity research. Nutr. Hosp., 2013, 28(Suppl. 5), 144-153. doi: 10.3305/nh.2013.28.sup5.6930 PMID: 24010755
  13. Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2022, 7(1), 298. doi: 10.1038/s41392-022-01149-x PMID: 36031641
  14. Conceição-Furber, E.; Coskun, T.; Sloop, K.W.; Samms, R.J. Is glucagon receptor activation the thermogenic solution for treating obesity? Front. Endocrinol., 2022, 13, 868037. doi: 10.3389/fendo.2022.868037 PMID: 35547006
  15. Reja, D.; Zhang, C.; Sarkar, A. Endoscopic bariatrics: Current therapies and future directions. Transl. Gastroenterol. Hepatol., 2022, 7, 21. doi: 10.21037/tgh.2020.03.09 PMID: 35548475
  16. Wang, Y.F.; Shen, Z.C.; Li, J.; Liang, T.; Lin, X.F.; Li, Y.P.; Zeng, W.; Zou, Q.; Shen, J.L.; Wang, X.Y. Phytochemicals, biological activity, and industrial application of lotus seedpod (Receptaculum Nelumbinis): A review. Front. Nutr., 2022, 9, 1022794. doi: 10.3389/fnut.2022.1022794 PMID: 36267901
  17. Jit, B.P.; Pattnaik, S.; Arya, R.; Dash, R.; Sahoo, S.S.; Pradhan, B.; Bhuyan, P.P.; Behera, P.K.; Jena, M.; Sharma, A.; Agrawala, P.K.; Behera, R.K. Phytochemicals: A potential next generation agent for radioprotection. Phytomedicine, 2022, 106, 154188. doi: 10.1016/j.phymed.2022.154188 PMID: 36029645
  18. Santhiravel, S.; Bekhit, A.EA.; Mendis, E.; Jacobs, J.L.; Dunshe, F.R.; Rajapakse, N.; Ponnampalam, E.N. The impact of plant phytochemicals on the gut microbiota of humans for a balanced life. Int J Mol Sci., 2022, 23(15), 8124. doi: 10.3390/ijms23158124
  19. Yisimayili, Z.; Chao, Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L.). Food Chem., 2022, 395, 133600. doi: 10.1016/j.foodchem.2022.133600
  20. Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; Bahattab, O.; Thiruvengadam, M.; Suleria, H.A.R. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in Lettuce - A comprehensive review. Antioxidants, 2022, 11(6), 1158. doi: 10.3390/antiox11061158 PMID: 35740055
  21. Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T.; Zhang, M. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry. Foods, 2022, 11(8), 1170. doi: 10.3390/foods11081170 PMID: 35454757
  22. Poulios, E.; Giaginis, C.; Vasios, G.K. Current advances on the extraction and identification of bioactive components of sage (Salvia spp.). Curr. Pharm. Biotechnol., 2019, 20(10), 845-857. doi: 10.2174/1389201020666190722130440 PMID: 31333123
  23. Lim, X.Y.; The, B.P.; Tan, T.Y.C. Medicinal plants in COVID-19: Potential and limitations. Front Pharmacol., 2021, 12, 611408. doi: 10.3389/fphar.2021.611408
  24. Poulios, E.; Vasios, G.K.; Psara, E.; Giaginis, C. Medicinal plants consumption against urinary tract infections: A narrative review of the current evidence. Expert Rev. Anti Infect. Ther., 2021, 19(4), 519-528. doi: 10.1080/14787210.2021.1828061 PMID: 33016791
  25. Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact., 2019, 308, 294-303. doi: 10.1016/j.cbi.2019.05.050 PMID: 31158333
  26. Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of alzheimer’s disease. Biomolecules, 2021, 11(4), 543. doi: 10.3390/biom11040543 PMID: 33917843
  27. Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Disease-modifying treatment of Parkinson’s disease by phytochemicals: Targeting multiple pathogenic factors. J. Neural Transm., 2021, 2021 doi: 10.1007/s00702-021-02427-8 PMID: 34654977
  28. Zhao, X.; Kim, Y.R.; Min, Y.; Zhao, Y.; Do, K.; Son, Y.O. Natural plant extracts and compounds for Rheumatoid Arthritis Therapy. Medicina, 2021, 57(3), 266. doi: 10.3390/medicina57030266 PMID: 33803959
  29. Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev., 2021, 17(4), 437-456. doi: 10.2174/18756417MTExfMTQ1z PMID: 33143632
  30. Cote, B.; Elbarbry, F.; Bui, F.; Su, J.W.; Seo, K.; Nguyen, A.; Lee, M.; Rao, D.A. Mechanistic basis for the role of phytochemicals in inflammation-associated chronic diseases. Molecules, 2022, 27(3), 781. doi: 10.3390/molecules27030781 PMID: 35164043
  31. Aba, P.E.; Ihedioha, J.I.; Asuzu, I.U. A review of the mechanisms of anti-cancer activities of some medicinal plants–biochemical perspectives. J. Basic Clin. Physiol. Pharmacol., 2021, 0(0) doi: 10.1515/jbcpp-2021-0257 PMID: 34936737
  32. Saqib, U.; Khan, M.A.; Alagumuthu, M.; Parihar, S.P.; Baig, M.S. Natural compounds as antiatherogenic agents. Cell. Mol. Biol., 2021, 67(1), 177-188. doi: 10.14715/cmb/2021.67.1.27 PMID: 34817349
  33. Kamyab, R.; Namdar, H.; Torbati, M.; Ghojazadeh, M.; Araj-Khodaei, M.; Fazljou, S.M.B. Medicinal plants in the treatment of hypertension: A review. Adv. Pharm. Bull., 2020, 11(4), 601-617. doi: 10.34172/apb.2021.090 PMID: 34888207
  34. Dincer, Y.; Yuksel, S. Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition, 2021, 84, 111119. doi: 10.1016/j.nut.2020.111119 PMID: 33476999
  35. Chang, Y.H.; Hung, H.Y. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur. J. Med. Chem., 2022, 237, 114405. doi: 10.1016/j.ejmech.2022.114405 PMID: 35489224
  36. Ma, P.Y.; Li, X.Y.; Wang, Y.L.; Lang, D.Q.; Liu, L.; Yi, Y.K.; Liu, Q.; Shen, C.Y. Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol. Res., 2022, 178, 106175. doi: 10.1016/j.phrs.2022.106175 PMID: 35283301
  37. Li, H.; Qi, J.; Li, L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacol. Res., 2019, 147, 104393. doi: 10.1016/j.phrs.2019.104393 PMID: 31401211
  38. Atazadegan, M.A.; Bagherniya, M.; Fakheran, O.; Sathyapalan, T.; Sahebkar, A. The effect of herbal medicine and natural bioactive compounds on plasma adiponectin: A clinical review. Adv. Exp. Med. Biol., 2021, 1328, 37-57. doi: 10.1007/978-3-030-73234-9_4 PMID: 34981470
  39. Hofer, S.J.; Davinelli, S.; Bergmann, M.; Scapagnini, G.; Madeo, F. Caloric restriction mimetics in nutrition and clinical trials. Front. Nutr., 2021, 8, 717343. doi: 10.3389/fnut.2021.717343 PMID: 34552954
  40. Xu, X.; Yi, H.; Wu, J.; Kuang, T.; Zhang, J.; Li, Q.; Du, H.; Xu, T.; Jiang, G.; Fan, G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed. Pharmacother., 2021, 133, 110984. doi: 10.1016/j.biopha.2020.110984 PMID: 33186794
  41. Habtemariam, S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol. Res., 2020, 155, 104722. doi: 10.1016/j.phrs.2020.104722 PMID: 32105754
  42. Zhang, L.; Wu, X.; Yang, R.; Chen, F.; Liao, Y.; Zhu, Z.; Wu, Z.; Sun, X.; Wang, L. Effects of Berberine on the Gastrointestinal Microbiota. Front. Cell. Infect. Microbiol., 2021, 10, 588517. doi: 10.3389/fcimb.2020.588517 PMID: 33680978
  43. Sun, R.; Yang, N.; Kong, B.; Cao, B.; Feng, D.; Yu, X.; Ge, C.; Huang, J.; Shen, J.; Wang, P.; Feng, S.; Fei, F.; Guo, J.; He, J.; Aa, N.; Chen, Q.; Pan, Y.; Schumacher, J.D.; Yang, C.S.; Guo, G.L.; Aa, J.; Wang, G. Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal fxr signaling pathway. Mol. Pharmacol., 2017, 91(2), 110-122. doi: 10.1124/mol.116.106617 PMID: 27932556
  44. Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; Li, X.; Ning, G.; Zhao, L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 2012, 7(8), e42529. doi: 10.1371/journal.pone.0042529 PMID: 22880019
  45. Ferdous, M.R.; Abdalla, M.; Yang, M.; Xiaoling, L.; Song, Y. Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production. J. Biomol. Struct. Dyn., 2022, 25, 1-11. doi: 10.1080/07391102.2021.2024255 PMID: 35612892
  46. Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem., 2021, 226, 113839. doi: 10.1016/j.ejmech.2021.113839 PMID: 34536668
  47. Wu, Y.Y.; Huang, X.M.; Liu, J.; Cha, Y.; Chen, Z.P.; Wang, F.; Xu, J.; Sheng, L.; Ding, H.Y. Functional study of the upregulation of miRNA-27a and miRNA-27b in 3T3-L1 cells in response to berberine. Mol. Med. Rep., 2016, 14(3), 2725-2731. doi: 10.3892/mmr.2016.5545 PMID: 27484069
  48. Wang, M.; Xu, R.; Liu, X.; Zhang, L.; Qiu, S.; Lu, Y.; Zhang, P.; Yan, M.; Zhu, J. A co-crystal berberine-ibuprofen improves obesity by inhibiting the protein kinases TBK1 and IKKɛ. Commun. Biol., 2022, 5(1), 807. doi: 10.1038/s42003-022-03776-0 PMID: 35962183
  49. Noh, J.W.; Jun, M.S.; Yang, H.K.; Lee, B.C. Cellular and molecular mechanisms and effects of berberine on obesity-induced inflammation. Biomedicines, 2022, 10(7), 1739. doi: 10.3390/biomedicines10071739 PMID: 35885044
  50. Han, Y.B.; Tian, M.; Wang, X.X.; Fan, D.H.; Li, W.Z.; Wu, F.; Liu, L. Berberine ameliorates obesity-induced chronic inflammation through suppression of ER stress and promotion of macrophage M2 polarization at least partly via downregulating lncRNA Gomafu. Int. Immunopharmacol., 2020, 86, 106741. doi: 10.1016/j.intimp.2020.106741 PMID: 32650294
  51. Ilyas, Z.; Perna, S.; Al-thawadi, S.; Alalwan, T.A.; Riva, A.; Petrangolini, G.; Gasparri, C.; Infantino, V.; Peroni, G.; Rondanelli, M. The effect of Berberine on weight loss in order to prevent obesity: A systematic review. Biomed. Pharmacother., 2020, 127, 110137. doi: 10.1016/j.biopha.2020.110137 PMID: 32353823
  52. Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2021, 12, 653887. doi: 10.3389/fphar.2021.653887 PMID: 33981233
  53. Xiong, P.; Niu, L.; Talaei, S.; Kord-Varkaneh, H.; Clark, C.C.T.; Găman, M.A.; Rahmani, J.; Dorosti, M.; Mousavi, S.M.; Zarezadeh, M.; Taghizade-Bilondi, H.; Zhang, J. The effect of berberine supplementation on obesity indices: A dose– response meta-analysis and systematic review of randomized controlled trials. Complement. Ther. Clin. Pract., 2020, 39, 101113. doi: 10.1016/j.ctcp.2020.101113 PMID: 32379652
  54. Asbaghi, O.; Ghanbari, N.; shekari, M.; Reiner, Ž.; Amirani, E.; Hallajzadeh, J.; Mirsafaei, L.; Asemi, Z. The effect of berberine supplementation on obesity parameters, inflammation and liver function enzymes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN, 2020, 38, 43-49. doi: 10.1016/j.clnesp.2020.04.010 PMID: 32690176
  55. Wu, L.; Meng, J.; Shen, Q.; Zhang, Y.; Pan, S.; Chen, Z.; Zhu, L.Q.; Lu, Y.; Huang, Y.; Zhang, G. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat. Commun., 2017, 8(1), 15904. doi: 10.1038/ncomms15904 PMID: 28654087
  56. Dangol, M.; Kim, S.; Li, C.G.; Fakhraei Lahiji, S.; Jang, M.; Ma, Y.; Huh, I.; Jung, H. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J. Control. Release, 2017, 265, 41-47. doi: 10.1016/j.jconrel.2017.03.400 PMID: 28389409
  57. Kim, H.; Lee, M.; Park, H.; Park, Y.; Shon, J.; Liu, K.H.; Lee, C. Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption. Molecules, 2015, 20(2), 3107-3128. doi: 10.3390/molecules20023107 PMID: 25689639
  58. Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct., 2015, 6(1), 296-303. doi: 10.1039/C4FO00970C PMID: 25431018
  59. Shanmugham, V.; Subban, R. Comparison of the Anti-Obesity Effect of Enriched Capsanthin and Capsaicin from Capsicum annuum L. Fruit in Obesity-Induced C57BL/6J Mouse Model. Food Technol. Biotechnol., 2022, 60(2), 202-212. doi: 10.17113/ftb.60.02.22.7376 PMID: 35910274
  60. Li, R.; Lan, Y.; Chen, C.; Cao, Y.; Huang, Q.; Ho, C.T.; Lu, M. Anti-obesity effects of capsaicin and the underlying mechanisms: A review. Food Funct., 2020, 11(9), 7356-7370. doi: 10.1039/D0FO01467B PMID: 32820787
  61. Wang, Y.; Tang, C.; Tang, Y.; Yin, H.; Liu, X. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food Nutr. Res., 2020, 64(0) doi: 10.29219/fnr.v64.3525 PMID: 32180694
  62. Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; Mi, M. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 2017, 8(3), e00470-17. doi: 10.1128/mBio.00470-17 PMID: 28536285
  63. Kang, J.H.; Tsuyoshi, G.; Han, I.S.; Kawada, T.; Kim, Y.M.; Yu, R. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity, 2010, 18(4), 780-787. doi: 10.1038/oby.2009.301 PMID: 19798065
  64. Shen, W.; Shen, M.; Zhao, X.; Zhu, H.; Yang, Y.; Lu, S.; Tan, Y.; Li, G.; Li, M.; Wang, J.; Hu, F.; Le, S. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the Gut Bacterium Akkermansia muciniphila. Front. Microbiol., 2017, 8, 272. doi: 10.3389/fmicb.2017.00272 PMID: 28280490
  65. Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol., 2016, 173(15), 2369-2389. doi: 10.1111/bph.13514 PMID: 27174467
  66. Lu, M.; Cao, Y.; Ho, C.T.; Huang, Q. The enhanced anti-obesity effect and reduced gastric mucosa irritation of capsaicin-loaded nanoemulsions. Food Funct., 2017, 8(5), 1803-1809. doi: 10.1039/C7FO00173H PMID: 28443906
  67. Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary capsaicin and its anti-obesity potency: From mechanism to clinical implications. Biosci. Rep., 2017, 37(3), BSR20170286. doi: 10.1042/BSR20170286 PMID: 28424369
  68. Fattori, V.; Hohmann, M.; Rossaneis, A.; Pinho-Ribeiro, F.; Verri, W. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, 2016, 21(7), 844. doi: 10.3390/molecules21070844 PMID: 27367653
  69. Leung, F.W. Capsaicin as an anti-obesity drug. Prog. Drug Res., 2014, 68, 171-179. doi: 10.1007/978-3-0348-0828-6_7 PMID: 24941669
  70. Zsiborás, C.; Mátics, R.; Hegyi, P.; Balaskó, M.; Pétervári, E.; Szabó, I.; Sarlós, P.; Mikó, A.; Tenk, J.; Rostás, I.; Pécsi, D.; Garami, A.; Rumbus, Z.; Huszár, O.; Solymár, M. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1419-1427. doi: 10.1080/10408398.2016.1262324 PMID: 28001433
  71. Shi, X.D.; Zhang, J.X.; Hu, X.D.; Zhuang, T.; Lu, N.; Ruan, C.C. Leonurine attenuates obesity-related vascular dysfunction and inflammation. Antioxidants, 2022, 11(7), 1338. doi: 10.3390/antiox11071338 PMID: 35883829
  72. Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930. doi: 10.3390/molecules24162930 PMID: 31412624
  73. Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The beneficial effects of Quercetin, Curcumin, and Resveratrol in obesity. Oxid. Med. Cell. Longev., 2017, 2017, 1-8. doi: 10.1155/2017/1459497 PMID: 29138673
  74. Martínez-Morúa, A.; Soto-Urquieta, M.G.; Franco-Robles, E.; Zúñiga-Trujillo, I.; Campos-Cervantes, A.; Pérez-Vázquez, V.; Ramírez-Emiliano, J. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fat diet-induced obese mice. J. Asian Nat. Prod. Res., 2013, 15(8), 905-915. doi: 10.1080/10286020.2013.802687 PMID: 23782307
  75. Ariamoghaddam, A.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Sahraeian, R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Mater. Sci. Eng. C, 2018, 92, 161-171. doi: 10.1016/j.msec.2018.06.030 PMID: 30184739
  76. Bradford, P.G. Curcumin and obesity. Biofactors, 2013, 39(1), 78-87. doi: 10.1002/biof.1074 PMID: 23339049
  77. Pan, S.; Chen, Y.; Zhang, L.; Liu, Z.; Xu, X.; Xing, H. Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes. Animal Bioscience, 2022, 35(5), 763-777. doi: 10.5713/ab.21.0371 PMID: 34727633
  78. Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats. J. Complement. Integr. Med., 2016, 13(2), 137-143. doi: 10.1515/jcim-2015-0070 PMID: 26845728
  79. Mokgalaboni, K.; Ntamo, Y.; Ziqubu, K.; Nyambuya, T.M.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Chellan, N.; Tiano, L.; Dludla, P.V. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: Updating the status of clinical evidence. Food Funct., 2021, 12(24), 12235-12249. doi: 10.1039/D1FO02696H PMID: 34847213
  80. Kobori, M.; Takahashi, Y.; Takeda, H.; Takahashi, M.; Izumi, Y.; Akimoto, Y.; Sakurai, M.; Oike, H.; Nakagawa, T.; Itoh, M.; Bamba, T.; Kimura, T. Dietary intake of curcumin improves eif2 signaling and reduces lipid levels in the white adipose tissue of obese mice. Sci. Rep., 2018, 8(1), 9081. doi: 10.1038/s41598-018-27105-w PMID: 29899429
  81. Wu, L.Y.; Chen, C.W.; Chen, L.K.; Chou, H.Y.; Chang, C.L.; Juan, C.C. Curcumin Attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients, 2019, 11(10), 2307. doi: 10.3390/nu11102307 PMID: 31569380
  82. Tian, L.; Song, Z.; Shao, W.; Du, W.W.; Zhao, L.R.; Zeng, K.; Yang, B.B.; Jin, T. Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death Dis., 2017, 8(1), e2559. doi: 10.1038/cddis.2016.455 PMID: 28102847
  83. Zhao, D.; Pan, Y.; Yu, N.; Bai, Y.; Ma, R.; Mo, F.; Zuo, J.; Chen, B.; Jia, Q.; Zhang, D.; Liu, J.; Jiang, G.; Gao, S. Curcumin improves adipocytes browning and mitochondrial function in 3T3-L1 cells and obese rodent model. R. Soc. Open Sci., 2021, 8(3), 200974. doi: 10.1098/rsos.200974 PMID: 33959308
  84. Sakuma, S.; Sumida, M.; Endoh, Y.; Kurita, A.; Yamaguchi, A.; Watanabe, T.; Kohda, T.; Tsukiyama, Y.; Fujimoto, Y. Curcumin inhibits adipogenesis induced by benzyl butyl phthalate in 3T3-L1 cells. Toxicol. Appl. Pharmacol., 2017, 329, 158-164. doi: 10.1016/j.taap.2017.05.036 PMID: 28595985
  85. Chen, Y.; Wu, R.; Chen, W.; Liu, Y.; Liao, X.; Zeng, B.; Guo, G.; Lou, F.; Xiang, Y.; Wang, Y.; Wang, X. Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m 6 A-dependent manner. EMBO Rep., 2021, 22(5), e52146. doi: 10.15252/embr.202052146 PMID: 33880847
  86. Ferguson, B.S.; Nam, H.; Morrison, R.F. Curcumin inhibits 3T3-L1 preadipocyte proliferation by mechanisms involving post-transcriptional p27 regulation. Biochem. Biophys. Rep., 2016, 5, 16-21. doi: 10.1016/j.bbrep.2015.11.014 PMID: 26688832
  87. Zhu, L.; Han, M.B.; Gao, Y.; Wang, H.; Dai, L.; Wen, Y.; Na, L.X. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol. Med. Rep., 2015, 12(1), 1151-1156. doi: 10.3892/mmr.2015.3450 PMID: 25760477
  88. Valentine, C.; Ohnishi, K.; Irie, K.; Murakami, A. Curcumin may induce lipolysis via proteo-stress in Huh7 human hepatoma cells. J. Clin. Biochem. Nutr., 2019, 65(2), 91-98. doi: 10.3164/jcbn.19-7 PMID: 31592057
  89. Zingg, J.M.; Hasan, S.T.; Nakagawa, K.; Canepa, E.; Ricciarelli, R.; Villacorta, L.; Azzi, A.; Meydani, M. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors, 2017, 43(1), 42-53. doi: 10.1002/biof.1307 PMID: 27355903
  90. Ding, L.; Li, J.; Song, B.; Xiao, X.; Zhang, B.; Qi, M.; Huang, W.; Yang, L.; Wang, Z. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol. Appl. Pharmacol., 2016, 304, 99-109. doi: 10.1016/j.taap.2016.05.011 PMID: 27208389
  91. Shen, L.; Liu, L.; Ji, H.F. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr. Res., 2017, 61(1), 1361780. doi: 10.1080/16546628.2017.1361780 PMID: 28814952
  92. Islam, T.; Koboziev, I.; Albracht-Schulte, K.; Mistretta, B.; Scoggin, S.; Yosofvand, M.; Moussa, H.; Zabet-Moghaddam, M.; Ramalingam, L.; Gunaratne, P.H.; Moustaid-Moussa, N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice. Mol. Nutr. Food Res., 2021, 65(22), 2100274. doi: 10.1002/mnfr.202100274 PMID: 34510720
  93. Li, S.; You, J.; Wang, Z.; Liu, Y.; Wang, B.; Du, M.; Zou, T. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res. Int., 2021, 143, 110270. doi: 10.1016/j.foodres.2021.110270 PMID: 33992371
  94. Han, Z.; Yao, L.; Zhong, Y.; Xiao, Y.; Gao, J.; Zheng, Z.; Fan, S.; Zhang, Z.; Gong, S.; Chang, S.; Cui, X.; Cai, J. Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity. Food Funct., 2021, 12(14), 6558-6575. doi: 10.1039/D1FO00671A PMID: 34096956
  95. Al-Saud, N.B.S. Impact of curcumin treatment on diabetic albino rats. Saudi J. Biol. Sci., 2020, 27(2), 689-694. doi: 10.1016/j.sjbs.2019.11.037 PMID: 32210689
  96. Shabbir, U.; Rubab, M.; Daliri, E.B.M.; Chelliah, R.; Javed, A.; Oh, D.H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients, 2021, 13(1), 206. doi: 10.3390/nu13010206 PMID: 33445760
  97. Koboziev, I.; Scoggin, S.; Gong, X.; Mirzaei, P.; Zabet-Moghaddam, M.; Yosofvand, M.; Moussa, H.; Jones-Hall, Y.; Moustaid-Moussa, N. Effects of curcumin in a mouse model of very high fat diet-induced obesity. Biomolecules, 2020, 10(10), 1368. doi: 10.3390/biom10101368 PMID: 32992936
  98. Costa, M.C.; Lima, T.F.O.; Arcaro, C.A.; Inacio, M.D.; Batista-Duharte, A.; Carlos, I.Z.; Spolidorio, L.C.; Assis, R.P.; Brunetti, I.L.; Baviera, A.M. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J. Nutr. Biochem., 2020, 76, 108303. doi: 10.1016/j.jnutbio.2019.108303 PMID: 31812909
  99. Ganjali, S.; Sahebkar, A.; Mahdipour, E.; Jamialahmadi, K.; Torabi, S.; Akhlaghi, S.; Ferns, G.; Parizadeh, S.M.R.; Ghayour-Mobarhan, M. Investigation of the effects of curcumin on serum cytokines in obese individuals : A randomized controlled trial. Sci. World J., 2014, 2014, 1-6. doi: 10.1155/2014/898361 PMID: 24678280
  100. Alsharif, F.J.; Almuhtadi, Y.A. The effect of curcumin supplementation on anthropometric measures among overweight or obese adults. Nutrients, 2021, 13(2), 680. doi: 10.3390/nu13020680 PMID: 33672680
  101. Sangouni, A.A.; Taghdir, M.; Mirahmadi, J.; Sepandi, M.; Parastouei, K. Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: A randomized clinical trial. Nutr. J., 2022, 21(1), 62. doi: 10.1186/s12937-022-00816-7 PMID: 36192751
  102. Nurcahyanti, A.D.R.; Cokro, F.; Wulanjati, M.P.; Mahmoud, M.F.; Wink, M.; Sobeh, M. Curcuminoids for metabolic syndrome: Meta-Analysis evidences toward personalized prevention and treatment management. Front. Nutr., 2022, 9, 891339. doi: 10.3389/fnut.2022.891339 PMID: 35757255
  103. Vafaeipour, Z.; Razavi, B.M.; Hosseinzadeh, H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. J. Integr. Med., 2022, 20(3), 193-203. doi: 10.1016/j.joim.2022.02.008 PMID: 35292209
  104. Hellmann, P.H.; Bagger, J.I.; Carlander, K.R.; Forman, J.; Chabanova, E.; Svenningsen, J.S.; Holst, J.J.; Gillum, M.P.; Vilsbøll, T.; Knop, F.K. The effect of curcumin on hepatic fat content in individuals with obesity. Diabetes Obes. Metab., 2022, 24(11), 2192-2202. doi: 10.1111/dom.14804 PMID: 35775631
  105. Karandish, M.; Mozaffari-khosravi, H.; Mohammadi, S.M.; Cheraghian, B.; Azhdari, M. Curcumin and zinc co-supplementation along with a loss-weight diet can improve lipid profiles in subjects with prediabetes: A multi-arm, parallel-group, randomized, double-blind placebo-controlled phase 2 clinical trial. Diabetol. Metab. Syndr., 2022, 14(1), 22. doi: 10.1186/s13098-022-00792-2 PMID: 35090529
  106. Nosrati-Oskouie, M.; Aghili-Moghaddam, N.S.; Sathyapalan, T.; Sahebkar, A. Impact of curcumin on fatty acid metabolism. Phytother. Res., 2021, 35(9), 4748-4762. doi: 10.1002/ptr.7105 PMID: 33825246
  107. Pourhabibi-Zarandi, F.; Rafraf, M.; Zayeni, H.; Asghari-Jafarabadi, M.; Ebrahimi, A.A. Effects of curcumin supplementation on metabolic parameters, inflammatory factors and obesity values in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res., 2022, 36(4), 1797-1806. doi: 10.1002/ptr.7422 PMID: 35178811
  108. Safari, Z.; Bagherniya, M.; Askari, G.; Sathyapalan, T.; Sahebkar, A. The effect of curcumin supplemsentation on anthropometric indices in overweight and obese individuals: A systematic review of randomized controlled trials. Adv. Exp. Med. Biol., 2021, 1291, 121-137. doi: 10.1007/978-3-030-56153-6_7 PMID: 34331687
  109. Obeid, M.A.; Alsaadi, M.; Aljabali, A.A. Recent updates in curcumin delivery. J. Liposome Res., 2022, 14, 1-12. doi: 10.1080/08982104.2022.2086567 PMID: 35699160
  110. Suzuki, T.; Pervin, M.; Goto, S.; Isemura, M.; Nakamura, Y. Beneficial effects of tea and the Green Tea Catechin Epigallocatechin-3-gallate on Obesity. Molecules, 2016, 21(10), 1305. doi: 10.3390/molecules21101305 PMID: 27689985
  111. Sampath, C.; Rashid, M.R.; Sang, S.; Ahmedna, M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed. Pharmacother., 2017, 87, 73-81. doi: 10.1016/j.biopha.2016.12.082 PMID: 28040599
  112. Sun, X.; Dey, P.; Bruno, R.S.; Zhu, J. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. J. Nutr. Biochem., 2022, 109, 109094. doi: 10.1016/j.jnutbio.2022.109094 PMID: 35777589
  113. Sheng, L.; Jena, P.K.; Liu, H.X.; Hu, Y.; Nagar, N.; Bronner, D.N.; Settles, M.L.; Baümler, A.J.; Wan, Y.J.Y. Obesity treatment by epigallocatechin-3-gallate−regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J., 2018, 32(12), 6371-6384. doi: 10.1096/fj.201800370R PMID: 29882708
  114. Gu, Q.; Wang, X.; Xie, L.; Yao, X.; Qian, L.; Yu, Z.; Shen, X. Green tea catechin EGCG could prevent obesity-related precocious puberty through NKB/NK3R signaling pathway. J. Nutr. Biochem., 2022, 108, 109085. doi: 10.1016/j.jnutbio.2022.109085 PMID: 35691596
  115. Byun, J.K.; Yoon, B.Y.; Jhun, J.Y.; Oh, H.J.; Kim, E.; Min, J.K.; Cho, M.L. Epigallocatechin-3-gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4+ T-cell subsets. Immunol. Lett., 2014, 157(1-2), 51-59. doi: 10.1016/j.imlet.2013.11.006 PMID: 24239847
  116. Chen, Y.K.; Cheung, C.; Reuhl, K.R.; Liu, A.B.; Lee, M.J.; Lu, Y.P.; Yang, C.S. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem., 2011, 59(21), 11862-11871. doi: 10.1021/jf2029016 PMID: 21932846
  117. Nicoletti, C.F.; Delfino, H.B.P.; Pinhel, M.; Noronha, N.Y.; Pinhanelli, V.C.; Quinhoneiro, D.C.G.; de Oliveira, B.A.P.; Marchini, J.S.; Nonino, C.B. Impact of green tea epigallocatechin-3-gallate on HIF1-α and mTORC2 expression in obese women: Anti-cancer and anti-obesity effects? Nutr. Hosp., 2019, 36(2), 315-320. doi: 10.20960/nh.2216
  118. Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A therapeutic agent for obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866. doi: 10.2147/DDDT.S227499 PMID: 32009777
  119. Park, U.H.; Hwang, J.T.; Youn, H.; Kim, E.J.; Um, S.J. Kaempferol antagonizes adipogenesis by repressing histone H3K4 methylation at PPARγ target genes. Biochem. Biophys. Res. Commun., 2022, 617(Pt 1), 48-54. doi: 10.1016/j.bbrc.2022.05.098 PMID: 35679710
  120. Romero-Juárez, P.A.; Visco, D.B.; Manhães-de-Castro, R.; Urquiza-Martínez, M.V.; Saavedra, L.M.; González-Vargas, M.C.; Mercado-Camargo, R.; Aquino, J.S.; Toscano, A.E.; Torner, L.; Guzmán-Quevedo, O. Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity. Nutr. Neurosci., 2021, 14, 1-15. doi: 10.1080/1028415X.2021.2012629 PMID: 34905445
  121. Bian, Y.; Lei, J.; Zhong, J.; Wang, B.; Wan, Y.; Li, J.; Liao, C.; He, Y.; Liu, Z.; Ito, K.; Zhang, B. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J. Nutr. Biochem., 2022, 99, 108840. doi: 10.1016/j.jnutbio.2021.108840 PMID: 34419569
  122. Wang, T.; Wu, Q.; Zhao, T. Preventive effects of Kaempferol on High-Fat Diet-Induced obesity complications in C57BL/6 Mice. BioMed Res. Int., 2020, 2020, 1-9. doi: 10.1155/2020/4532482 PMID: 32337249
  123. Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct., 2015, 6(3), 834-841. doi: 10.1039/C4FO00844H PMID: 25599885
  124. Torres-Villarreal, D.; Camacho, A.; Castro, H.; Ortiz-Lopez, R.; de la Garza, A.L. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. J. Physiol. Biochem., 2019, 75(1), 83-88. doi: 10.1007/s13105-018-0659-4 PMID: 30539499
  125. Deepika; Maurya, P.K. Health benefits of Quercetin in age-related diseases. Molecules, 2022, 27(8), 2498. doi: 10.3390/molecules27082498 PMID: 35458696
  126. Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res., 2021, 35(10), 5352-5364. doi: 10.1002/ptr.7144 PMID: 34101925
  127. Nettore, I.C.; Rocca, C.; Mancino, G.; Albano, L.; Amelio, D.; Grande, F.; Puoci, F.; Pasqua, T.; Desiderio, S.; Mazza, R.; Terracciano, D.; Colao, A.; Bèguinot, F.; Russo, G.L.; Dentice, M.; Macchia, P.E.; Sinicropi, M.S.; Angelone, T.; Ungaro, P. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J. Nutr. Biochem., 2019, 69, 151-162. doi: 10.1016/j.jnutbio.2019.03.019 PMID: 31096072
  128. Seo, M.J.; Lee, Y.J.; Hwang, J.H.; Kim, K.J.; Lee, B.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J. Nutr. Biochem., 2015, 26(11), 1308-1316. doi: 10.1016/j.jnutbio.2015.06.005 PMID: 26277481
  129. Dong, J.; Zhang, X.; Zhang, L.; Bian, H.X.; Xu, N.; Bao, B.; Liu, J. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J. Lipid Res., 2014, 55(3), 363-374. doi: 10.1194/jlr.M038786 PMID: 24465016
  130. Griffin, L.E.; Essenmacher, L.; Racine, K.C.; Iglesias-Carres, L.; Tessem, J.S.; Smith, S.M.; Neilson, A.P. Diet-induced obesity in genetically diverse collaborative cross mouse founder strains reveals diverse phenotype response and amelioration by quercetin treatment in 129S1/SvImJ, PWK/EiJ, CAST/PhJ, and WSB/EiJ mice. J. Nutr. Biochem., 2021, 87, 108521. doi: 10.1016/j.jnutbio.2020.108521 PMID: 33039581
  131. Juárez-Fernández, M.; Porras, D.; Petrov, P.; Román-Sagüillo, S.; García-Mediavilla, M.V.; Soluyanova, P.; Martínez-Flórez, S.; González-Gallego, J.; Nistal, E.; Jover, R.; Sánchez-Campos, S. The synbiotic combination of Akkermansia muciniphila and Quercetin Ameliorates early obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants, 2021, 10(12), 2001. doi: 10.3390/antiox10122001 PMID: 34943104
  132. Tan, Y.; Tam, C.C.; Rolston, M.; Alves, P.; Chen, L.; Meng, S.; Hong, H.; Chang, S.K.C.; Yokoyama, W. Quercetin ameliorates insulin resistance and restores gut microbiome in mice on high-fat diets. Antioxidants, 2021, 10(8), 1251. doi: 10.3390/antiox10081251 PMID: 34439499
  133. Liu, E.; Tsuboi, H.; Ikegami, S.; Kamiyama, T.; Asami, Y.; Ye, L.; Oda, M.; Ji, Z.S. Effects of Nelumbo nucifera Leaf Extract on Obesity. Plant Foods Hum. Nutr., 2021, 76(3), 377-384. doi: 10.1007/s11130-020-00852-w PMID: 34462872
  134. D’Esposito, V.; Ambrosio, M.R.; Liguoro, D.; Perruolo, G.; Lecce, M.; Cabaro, S.; Aprile, M.; Marino, A.; Pilone, V.; Forestieri, P.; Miele, C.; Bruzzese, D.; Terracciano, D.; Beguinot, F.; Formisano, P. In severe obesity, subcutaneous adipose tissue cell-derived cytokines are early markers of impaired glucose tolerance and are modulated by quercetin. Int. J. Obes., 2021, 45(8), 1811-1820. doi: 10.1038/s41366-021-00850-1 PMID: 33993191
  135. Pei, Y.; Otieno, D.; Gu, I.; Lee, S.O.; Parks, J.S.; Schimmel, K.; Kang, H.W. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J. Nutr. Biochem., 2021, 88, 108532. doi: 10.1016/j.jnutbio.2020.108532 PMID: 33130188
  136. Jiang, H.; Horiuchi, Y.; Hironao, K.; Kitakaze, T.; Yamashita, Y.; Ashida, H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J. Clin. Biochem. Nutr., 2020, 67(1), 75-83. doi: 10.3164/jcbn.20-47 PMID: 32801472
  137. Yang, L.; Li, X.F.; Gao, L.; Zhang, Y.O.; Cai, G.P. Suppressive effects of quercetin-3-O-(6″-Feruloyl)-β-D-galactopyranoside on adipogenesis in 3T3-L1 preadipocytes through down-regulation of PPARγ and C/EBPα expression. Phytother. Res., 2012, 26(3), 438-444. doi: 10.1002/ptr.3604 PMID: 21833993
  138. Selek Aksoy, I.; Otles, S. Effects of green apple (Golden Delicious) and its three major flavonols consumption on obesity, lipids, and oxidative stress in obese rats. Molecules, 2022, 27(4), 1243. doi: 10.3390/molecules27041243 PMID: 35209038
  139. Khan, F.A.; Maalik, A.; Murtaza, G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food Drug Anal., 2016, 24(4), 695-702. doi: 10.1016/j.jfda.2016.05.003 PMID: 28911606
  140. Shin, S.H.; Seo, S.G.; Min, S.; Yang, H.; Lee, E.; Son, J.E.; Kwon, J.Y.; Yue, S.; Chung, M.Y.; Kim, K.H.; Cheng, J.X.; Lee, H.J.; Lee, K.W. Caffeic acid phenethyl ester, a major component of propolis, suppresses high fat diet-induced obesity through inhibiting adipogenesis at the mitotic clonal expansion stage. J. Agric. Food Chem., 2014, 62(19), 4306-4312. doi: 10.1021/jf405088f PMID: 24611533
  141. Liao, C.C.; Ou, T.T.; Wu, C.H.; Wang, C.J. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J. Agric. Food Chem., 2013, 61(46), 11082-11088. doi: 10.1021/jf4026647 PMID: 24156384
  142. Kumar, R.; Sharma, A.; Iqbal, M.S.; Srivastava, J.K. Therapeutic promises of chlorogenic acid with special emphasis on its anti-obesity property. Curr. Mol. Pharmacol., 2020, 13(1), 7-16. doi: 10.2174/1874467212666190716145210 PMID: 31333144
  143. Shao, W.; Xu, J.; Xu, C.; Weng, Z.; Liu, Q.; Zhang, X.; Liang, J.; Li, W.; Zhang, Y.; Jiang, Z.; Gu, A. Early-life perfluorooctanoic acid exposure induces obesity in male offspring and the intervention role of chlorogenic acid. Environ. Pollut., 2021, 272, 115974. doi: 10.1016/j.envpol.2020.115974 PMID: 33218772
  144. He, X.; Zheng, S.; Sheng, Y.; Miao, T.; Xu, J.; Xu, W.; Huang, K.; Zhao, C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. J. Sci. Food Agric., 2021, 101(2), 631-637. doi: 10.1002/jsfa.10675 PMID: 32683698
  145. Wang, Z.; Lam, K.L.; Hu, J.; Ge, S.; Zhou, A.; Zheng, B.; Zeng, S.; Lin, S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr., 2019, 7(2), 579-588. doi: 10.1002/fsn3.868 PMID: 30847137
  146. Ghadieh, H.E.; Smiley, Z.N.; Kopfman, M.W.; Najjar, M.G.; Hake, M.J.; Najjar, S.M. Chlorogenic acid/chromium supplement rescues diet-induced insulin resistance and obesity in mice. Nutr. Metab., 2015, 12(1), 19. doi: 10.1186/s12986-015-0014-5 PMID: 26045713
  147. Tang, S.; Fang, C.; Liu, Y.; Tang, L.; Xu, Y. Anti-obesity and Anti-diabetic Effect of Ursolic Acid against Streptozotocin/High Fat Induced Obese in Diabetic Rats. J. Oleo Sci., 2022, 71(2), 289-300. doi: 10.5650/jos.ess21258 PMID: 35034940
  148. González-Garibay, A.S.; López-Vázquez, A.; García-Bañuelos, J.; Sánchez-Enríquez, S.; Sandoval-Rodríguez, A.S.; Del Toro Arreola, S.; Bueno-Topete, M.R.; Muñoz-Valle, J.F.; González Hita, M.E.; Domínguez-Rosales, J.A.; Armendáriz-Borunda, J.; Bastidas-Ramírez, B.E. Effect of ursolic acid on insulin resistance and hyperinsulinemia in rats with diet-induced obesity: Role of adipokines expression. J. Med. Food, 2020, 23(3), 297-304. doi: 10.1089/jmf.2019.0154 PMID: 31747348
  149. Nguyen, H.N.; Ahn, Y.J.; Medina, E.A.; Asmis, R. Dietary 23–hydroxy ursolic acid protects against atherosclerosis and obesity by preventing dyslipidemia-induced monocyte priming and dysfunction. Atherosclerosis, 2018, 275, 333-341. doi: 10.1016/j.atherosclerosis.2018.06.882 PMID: 30015296
  150. Rao, V.S.; de Melo, C.L.; Queiroz, M.G.R.; Lemos, T.L.G.; Menezes, D.B.; Melo, T.S.; Santos, F.A. Ursolic acid, a pentacyclic triterpene from Sambucus australis, prevents abdominal adiposity in mice fed a high-fat diet. J. Med. Food, 2011, 14(11), 1375-1382. doi: 10.1089/jmf.2010.0267 PMID: 21612453
  151. Kunkel, S.D.; Elmore, C.J.; Bongers, K.S.; Ebert, S.M.; Fox, D.K.; Dyle, M.C.; Bullard, S.A.; Adams, C.M. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One, 2012, 7(6), e39332. doi: 10.1371/journal.pone.0039332 PMID: 22745735
  152. Feng, Y.; Huang, S.; Dou, W.; Zhang, S.; Chen, J.; Shen, Y.; Shen, J.; Leng, Y. Emodin, a natural product, selectively inhibits 11β-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br. J. Pharmacol., 2010, 161(1), 113-126. doi: 10.1111/j.1476-5381.2010.00826.x PMID: 20718744
  153. Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891. doi: 10.1002/med.21565 PMID: 30741437
  154. Barber, T.M.; Kabisch, S.; Randeva, H.S.; Pfeiffer, A.F.H.; Weickert, M.O. Implications of resveratrol in obesity and insulin resistance: A state-of-the-art review. Nutrients, 2022, 14(14), 2870. doi: 10.3390/nu14142870 PMID: 35889827
  155. Kim, O.Y.; Chung, J.Y.; Song, J. Effect of resveratrol on adipokines and myokines involved in fat browning: Perspectives in healthy weight against obesity. Pharmacol. Res., 2019, 148, 104411. doi: 10.1016/j.phrs.2019.104411 PMID: 31449976
  156. Zu, Y.; Zhao, L.; Hao, L.; Mechref, Y.; Zabet-Moghaddam, M.; Keyel, P.A.; Abbasi, M.; Wu, D.; Dawson, J.A.; Zhang, R.; Nie, S.; Moustaid-Moussa, N.; Kolonin, M.G.; Daquinag, A.C.; Brandi, L.; Warraich, I.; San Francisco, S.K.; Sun, X.; Fan, Z.; Wang, S. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. J. Control. Release, 2021, 333, 339-351. doi: 10.1016/j.jconrel.2021.03.022 PMID: 33766692
  157. Hu, D.; Yang, W.; Mao, P.; Cheng, M. Combined Amelioration of Prebiotic Resveratrol and Probiotic Bifidobacteria on Obesity and Nonalcoholic Fatty Liver Disease. Nutr. Cancer, 2021, 73(4), 652-661. doi: 10.1080/01635581.2020.1767166 PMID: 32436410
  158. Gómez-Zorita, S.; Fernández-Quintela, A.; Lasa, A.; Hijona, E.; Bujanda, L.; Portillo, M.P. Effects of resveratrol on obesity-related inflammation markers in adipose tissue of genetically obese rats. Nutrition, 2013, 29(11-12), 1374-1380. doi: 10.1016/j.nut.2013.04.014 PMID: 24012391
  159. Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem., 2014, 25(1), 1-18. doi: 10.1016/j.jnutbio.2013.09.001 PMID: 24314860
  160. Szkudelska, K.; Szkudelski, T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol., 2010, 635(1-3), 1-8. doi: 10.1016/j.ejphar.2010.02.054 PMID: 20303945
  161. Carpéné, C.; Les, F.; Cásedas, G.; Peiro, C.; Fontaine, J.; Chaplin, A.; Mercader, J.; López, V. Resveratrol anti-obesity effects: Rapid inhibition of adipocyte glucose utilization. Antioxidants, 2019, 8(3), 74. doi: 10.3390/antiox8030074 PMID: 30917543
  162. Fraiz, G.M.; da Conceição, A.R.; de Souza Vilela, D.L.; Rocha, D.M.U.P.; Bressan, J.; Hermsdorff, H.H.M. Can resveratrol modulate sirtuins in obesity and related diseases? A systematic review of randomized controlled trials. Eur. J. Nutr., 2021, 60(6), 2961-2977. doi: 10.1007/s00394-021-02623-y PMID: 34251517
  163. Shabani, M.; Sadeghi, A.; Hosseini, H.; Teimouri, M.; Babaei Khorzoughi, R.; Pasalar, P.; Meshkani, R. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Sci. Rep., 2020, 10(1), 3791. doi: 10.1038/s41598-020-60185-1 PMID: 32123188
  164. Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging, 2019, 11(8), 2217-2240. doi: 10.18632/aging.101910 PMID: 30988232
  165. Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int. J. Obes., 2020, 44(1), 213-225. doi: 10.1038/s41366-019-0332-1 PMID: 30718820
  166. Wang, P.; Gao, J.; Ke, W.; Wang, J.; Li, D.; Liu, R.; Jia, Y.; Wang, X.; Chen, X.; Chen, F.; Hu, X. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic. Biol. Med., 2020, 156, 83-98. doi: 10.1016/j.freeradbiomed.2020.04.013 PMID: 32305646
  167. Castro-Rodríguez, D.C.; Reyes-Castro, L.A.; Vargas-Hernández, L.; Itani, N.; Nathanielsz, P.W.; Taylor, P.D.; Zambrano, E. Maternal obesity (MO) programs morphological changes in aged rat offspring small intestine in a sex dependent manner: Effects of maternal resveratrol supplementation. Exp. Gerontol., 2021, 154, 111511. doi: 10.1016/j.exger.2021.111511 PMID: 34371097
  168. Hsu, M.H.; Sheen, J.M.; Lin, I.C.; Yu, H.R.; Tiao, M.M.; Tain, Y.L.; Huang, L.T. Effects of maternal resveratrol on maternal high-fat diet/obesity with or without postnatal high-fat diet. Int. J. Mol. Sci., 2020, 21(10), 3428. doi: 10.3390/ijms21103428 PMID: 32408716
  169. Hillsley, A.; Chin, V.; Li, A.; McLachlan, C.S. Resveratrol for weight loss in obesity: An signs in ClinicalTrials.gov. Nutrients, 2022, 14(7), 1424. doi: 10.3390/nu14071424 PMID: 35406038
  170. Mousavi, S.M.; Milajerdi, A.; Sheikhi, A.; Kord-Varkaneh, H.; Feinle-Bisset, C.; Larijani, B.; Esmaillzadeh, A. Resveratrol supplementation significantly influences obesity measures: A systematic review and dose–response meta-analysis of randomized controlled trials. Obes. Rev., 2019, 20(3), 487-498. doi: 10.1111/obr.12775 PMID: 30515938
  171. Arzola-Paniagua, M.A.; García-Salgado López, E.R.; Calvo-Vargas, C.G.; Guevara-Cruz, M. Efficacy of an orlistat-resveratrol combination for weight loss in subjects with obesity: A randomized controlled trial. Obesity, 2016, 24(7), 1454-1463. doi: 10.1002/oby.21523 PMID: 27221771
  172. Sathyanarayana, A.R.; Lu, C.K.; Liaw, C.C.; Chang, C.C.; Han, H.Y.; Green, B.D.; Huang, W.J.; Huang, C.; He, W.D.; Lee, L.C.; Liu, H.K. 1,2,3,4,6-Penta-O-galloyl-d-glucose interrupts the early adipocyte lifecycle and attenuates adiposity and hepatic steatosis in mice with diet-induced obesity. Int. J. Mol. Sci., 2022, 23(7), 4052. doi: 10.3390/ijms23074052 PMID: 35409415
  173. Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; Sharifi-Rad, J. Carvacrol and human health: A comprehensive review. Phytother. Res., 2018, 32(9), 1675-1687. doi: 10.1002/ptr.6103 PMID: 29744941
  174. Spalletta, S.; Flati, V.; Toniato, E.; Di Gregorio, J.; Marino, A.; Pierdomenico, L.; Marchisio, M.; D’Orazi, G.; Cacciatore, I.; Robuffo, I. Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression. PLoS One, 2018, 13(11), e0206894. doi: 10.1371/journal.pone.0206894 PMID: 30418986
  175. Cho, S.; Choi, Y.; Park, S.; Park, T. Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J. Nutr. Biochem., 2012, 23(2), 192-201. doi: 10.1016/j.jnutbio.2010.11.016 PMID: 21447440
  176. Brahma Naidu, P.; Uddandrao, V.V.S.; Ravindar Naik, R.; Suresh, P.; Meriga, B.; Begum, M.S.; Pandiyan, R.; Saravanan, G. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol. Cell. Endocrinol., 2016, 419, 139-147. doi: 10.1016/j.mce.2015.10.007 PMID: 26493465
  177. Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric., 2014, 94(14), 2972-2977. doi: 10.1002/jsfa.6642 PMID: 24615565
  178. Sanders, O.D.; Rajagopal, J.A.; Rajagopal, L. Menthol to induce non-shivering thermogenesis via TRPM8/PKA signaling for treatment of obesity. J. Obes. Metab. Syndr., 2021, 30(1), 4-11. doi: 10.7570/jomes20038 PMID: 33071240
  179. Khare, P.; Mangal, P.; Baboota, R.K.; Jagtap, S.; Kumar, V.; Singh, D.P.; Boparai, R.K.; Sharma, S.S.; Khardori, R.; Bhadada, S.K.; Kondepudi, K.K.; Chopra, K.; Bishnoi, M. Involvement of glucagon in preventive effect of menthol against high fat diet induced obesity in mice. Front. Pharmacol., 2018, 9, 1244. doi: 10.3389/fphar.2018.01244 PMID: 30505271
  180. Vizin, R.C.L.; Motzko-Soares, A.C.P.; Armentano, G.M.; Ishikawa, D.T.; Cruz-Neto, A.P.; Carrettiero, D.C.; Almeida, M.C. Short-term menthol treatment promotes persistent thermogenesis without induction of compensatory food consumption in Wistar rats: Implications for obesity control. J. Appl. Physiol., 2018, 124(3), 672-683. doi: 10.1152/japplphysiol.00770.2017 PMID: 29357504
  181. Li, W.; Zeng, H.; Xu, M.; Huang, C.; Tao, L.; Li, J.; Zhang, T.; Chen, H.; Xia, J.; Li, C.; Li, X. Oleanolic acid improves obesity-related inflammation and insulin resistance by regulating macrophages activation. Front. Pharmacol., 2021, 12, 697483. doi: 10.3389/fphar.2021.697483 PMID: 34393781
  182. Djeziri, F.Z.; Belarbi, M.; Murtaza, B.; Hichami, A.; Benammar, C.; Khan, N.A. Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie, 2018, 152, 110-120. doi: 10.1016/j.biochi.2018.06.025 PMID: 29966735
  183. de Melo, C.L.; Queiroz, M.G.R.; Fonseca, S.G.C.; Bizerra, A.M.C.; Lemos, T.L.G.; Melo, T.S.; Santos, F.A.; Rao, V.S. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem. Biol. Interact., 2010, 185(1), 59-65. doi: 10.1016/j.cbi.2010.02.028 PMID: 20188082
  184. Sung, H.Y.; Kang, S.W.; Kim, J.L.; Li, J.; Lee, E.S.; Gong, J.H.; Han, S.J.; Kang, Y.H. Oleanolic acid reduces markers of differentiation in 3T3-L1 adipocytes. Nutr. Res., 2010, 30(12), 831-839. doi: 10.1016/j.nutres.2010.10.001 PMID: 21147366
  185. Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res., 2018, 32(9), 1688-1706. doi: 10.1002/ptr.6109 PMID: 29785774
  186. Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol., 2017, 8, 380. doi: 10.3389/fphar.2017.00380 PMID: 28694777
  187. Habtemariam, S. Antidiabetic potential of monoterpenes: A case of small molecules punching above their weight. Int. J. Mol. Sci., 2017, 19(1), 4. doi: 10.3390/ijms19010004 PMID: 29267214
  188. Haque, M.R.; Ansari, S.H.; Najmi, A.K.; Ahmad, M.A. Monoterpene phenolic compound thymol prevents high fat diet induced obesity in murine model. Toxicol. Mech. Methods, 2014, 24(2), 116-123. doi: 10.3109/15376516.2013.861888 PMID: 24175857
  189. Neilson, A.P.; Goodrich, K.M.; Ferruzzi, M.G. Bioavailability and Metabolism of Bioactive Compounds From Foods.Nutrition in the Prevention and Treatment of Disease; Delahanty, F.E., Ed.; Academic Press, 2017, pp. 301-319. doi: 10.1016/B978-0-12-802928-2.00015-1
  190. Basak, S.; Duttaroy, A.K. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients, 2020, 12(7), 1913. doi: 10.3390/nu12071913 PMID: 32605287
  191. Ibrahim, K.S.; El-Sayed, E.M. Dietary conjugated linoleic acid and medium-chain triglycerides for obesity management. J. Biosci., 2021, 46(1), 12. doi: 10.1007/s12038-020-00133-3 PMID: 33709964
  192. Sun, Y.; Hou, X.; Li, L.; Tang, Y.; Zheng, M.; Zeng, W.; Lei, X. Improving obesity and lipid metabolism using conjugated linoleic acid. Vet. Med. Sci., 2022, 8(6), 2538-2544. doi: 10.1002/vms3.921 PMID: 36104831
  193. Liu, L.; He, Y.; Wang, K.; Miao, J.; Zheng, Z. Metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity in mice fed with conjugated linoleic acid (CLA). Food Funct., 2020, 11(11), 9729-9739. doi: 10.1039/D0FO02112A PMID: 33063083
  194. O’Reilly, M.E.; Lenighan, Y.M.; Dillon, E.; Kajani, S.; Curley, S.; Bruen, R.; Byrne, R.; Heslin, A.M.; Moloney, A.P.; Roche, H.M.; McGillicuddy, F.C. Conjugated linoleic acid and alpha linolenic acid improve cholesterol homeostasis in obesity by modulating distinct hepatic protein pathways. Mol. Nutr. Food Res., 2020, 64(7), 1900599. doi: 10.1002/mnfr.201900599 PMID: 31917888
  195. Zhuang, P.; Shou, Q.; Wang, W.; He, L.; Wang, J.; Chen, J.; Zhang, Y.; Jiao, J. Essential fatty acids linoleic acid and α-linolenic acid sex-dependently regulate glucose homeostasis in obesity. Mol. Nutr. Food Res., 2018, 62(17), 1800448. doi: 10.1002/mnfr.201800448 PMID: 29935107
  196. Oh, S.L.; Lee, S.R.; Kim, J.S. Effects of conjugated linoleic acid/n-3 and resistance training on muscle quality and expression of atrophy-related ubiquitin ligases in middle-aged mice with high-fat dietinduced obesity. J. Exerc. Nutrition Biochem., 2017, 21(3), 11-18. doi: 10.20463/jenb.2017.0028 PMID: 29036761
  197. Dumont, J.; Goumidi, L.; Grenier-Boley, B.; Cottel, D.; Marécaux, N.; Montaye, M.; Wagner, A.; Arveiler, D.; Simon, C.; Ferrières, J.; Ruidavets, J.B.; Amouyel, P.; Dallongeville, J.; Meirhaeghe, A. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin. Nutr., 2018, 37(5), 1683-1689. doi: 10.1016/j.clnu.2017.07.012 PMID: 28774683
  198. Segovia, S.A.; Vickers, M.H.; Zhang, X.D.; Gray, C.; Reynolds, C.M. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring. J. Nutr. Biochem., 2015, 26(12), 1448-1457. doi: 10.1016/j.jnutbio.2015.07.013 PMID: 26318151
  199. Kim, Y.; Kim, D.; Good, D.J.; Park, Y. Effects of postweaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice. J. Agric. Food Chem., 2015, 63(21), 5212-5223. doi: 10.1021/acs.jafc.5b00840 PMID: 25976059
  200. Kim, J.H.; Gilliard, D.; Good, D.J.; Park, Y. Preventive effects of conjugated linoleic acid on obesity by improved physical activity in nescient basic helix-loop-helix 2 knockout mice during growth period. Food Funct., 2012, 3(12), 1280-1285. doi: 10.1039/c2fo30103b PMID: 22944770
  201. den Hartigh, L. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients, 2019, 11(2), 370. doi: 10.3390/nu11020370 PMID: 30754681
  202. Liang, C.W.; Cheng, H.Y.; Lee, Y.H.; Liou, T.H.; Liao, C.D.; Huang, S.W. Effects of conjugated linoleic acid and exercise on body composition and obesity: A systematic review and meta-analysis. Nutr. Rev., 2022, 81(4), 397-415. doi: 10.1093/nutrit/nuac060 PMID: 36048508
  203. He, Y.; Xu, K.; Li, Y.; Chang, H.; Liao, X.; Yu, H.; Tian, T.; Li, C.; Shen, Y.; Wu, Q.; Liu, X.; Shi, L. Metabolomic changes upon conjugated linoleic acid supplementation and predictions of body composition responsiveness. J. Clin. Endocrinol. Metab., 2022, 107(9), 2606-2615. doi: 10.1210/clinem/dgac367 PMID: 35704027
  204. Chang, H.; Gan, W.; Liao, X.; Wei, J.; Lu, M.; Chen, H.; Wang, S.; Ma, Y.; Wu, Q.; Yu, Y.; Liu, X. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr. Metab. Cardiovasc. Dis., 2020, 30(10), 1777-1784. doi: 10.1016/j.numecd.2020.05.029 PMID: 32684362
  205. Mądry, E.; Malesza, I.J.; Subramaniapillai, M.; Czochralska-Duszyńska, A.; Walkowiak, M.; Miśkiewicz-Chotnicka, A.; Walkowiak, J.; Lisowska, A. Body fat changes and liver safety in obese and overweight women supplemented with conjugated linoleic acid: A 12-week randomised, double-blind, placebo-controlled trial. Nutrients, 2020, 12(6), 1811. doi: 10.3390/nu12061811 PMID: 32560516
  206. Esmaeili Shahmirzadi, F.; Ghavamzadeh, S.; Zamani, T. The effect of conjugated linoleic acid supplementation on body composition, serum insulin and leptin in obese adults. Arch. Iran Med., 2019, 22(5), 255-261. PMID: 31256599
  207. Namazi, N.; Irandoost, P.; Larijani, B.; Azadbakht, L. The effects of supplementation with conjugated linoleic acid on anthropometric indices and body composition in overweight and obese subjects: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2019, 59(17), 2720-2733. doi: 10.1080/10408398.2018.1466107 PMID: 29672124
  208. Guo, X.; Zhang, T.; Shi, L.; Gong, M.; Jin, J.; Zhang, Y.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct., 2018, 9(12), 6048-6062. doi: 10.1039/C8FO01026A PMID: 30427004
  209. Lee, D.; Lee, J.H.; Kim, B.H.; Lee, S.; Kim, D.W.; Kang, K.S. Phytochemical combination (p-Synephrine, p-Octopamine Hydrochloride, and Hispidulin) for improving obesity in obese mice induced by high-fat diet. Nutrients, 2022, 14(10), 2164. doi: 10.3390/nu14102164 PMID: 35631305
  210. Hirotani, Y.; Fukamachi, J.; Ueyama, R.; Urashima, Y.; Ikeda, K. Effects of capsaicin coadministered with eicosapentaenoic acid on obesity-related dysregulation in high-fat-fed mice. Biol. Pharm. Bull., 2017, 40(9), 1581-1585. doi: 10.1248/bpb.b17-00247 PMID: 28867743
  211. Zhao, L.; Cen, F.; Tian, F.; Li, M.J.; Zhang, Q.; Shen, H.Y.; Shen, X.C.; Zhou, M.M.; Du, J. Combination treatment with quercetin and resveratrol attenuates high fat diet-induced obesity and associated inflammation in rats via the AMPKα1/SIRT1 signaling pathway. Exp. Ther. Med., 2017, 14(6), 5942-5948. doi: 10.3892/etm.2017.5331 PMID: 29285143
  212. Zhuang, T.; Liu, X.; Wang, W.; Song, J.; Zhao, L.; Ding, L.; Yang, L.; Zhou, M. Dose-Related urinary metabolic alterations of a combination of quercetin and resveratrol-treated high-fat diet fed rats. Front. Pharmacol., 2021, 12, 655563. doi: 10.3389/fphar.2021.655563 PMID: 33935771
  213. Zhu, M.; Zhou, F.; Ouyang, J.; Wang, Q.; Li, Y.; Wu, J.; Huang, J.; Liu, Z. Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism. Food Funct., 2021, 12(9), 4105-4116. doi: 10.1039/D0FO01768J PMID: 33977918
  214. Yang, Z.; Zhu, M.; Zhang, Y.; Wen, B.; An, H.; Ou, X.; Xiong, Y.; Lin, H.; Liu, Z.; Huang, J. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats. Phytother. Res., 2019, 33(4), 1019-1026. doi: 10.1002/ptr.6295 PMID: 30746789
  215. Liu, H.; Guan, H.; Tan, X.; Jiang, Y.; Li, F.; Sun-Waterhouse, D.; Li, D. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96–5p. Free Radic. Biol. Med., 2022, 181, 105-117. doi: 10.1016/j.freeradbiomed.2022.02.002 PMID: 35124182
  216. Ohara, T.; Muroyama, K.; Yamamoto, Y.; Murosaki, S. Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: A randomized double-blind placebo-controlled trial. Nutr. J., 2015, 15(1), 6. doi: 10.1186/s12937-016-0123-7 PMID: 26786000
  217. Ohara, T.; Muroyama, K.; Yamamoto, Y.; Murosaki, S. A combination of glucosyl hesperidin and caffeine exhibits an anti-obesity effect by inhibition of hepatic lipogenesis in mice. Phytother. Res., 2015, 29(2), 310-316. doi: 10.1002/ptr.5258 PMID: 25409936
  218. Rebello, C.J.; Greenway, F.L.; Zhang, D.; Johnson, W.D.; Patterson, E.; Raum, W. Sympathomimetic increases resting energy expenditure following bariatric surgery: A randomized controlled clinical trial. Obesity, 2022, 30(4), 874-883. doi: 10.1002/oby.23384 PMID: 35244344
  219. Bracale, R.; Petroni, M.L.; Davinelli, S.; Bracale, U.; Scapagnini, G.; Carruba, M.O.; Nisoli, E. Muscle uncoupling protein 3 expression is unchanged by chronic ephedrine/caffeine treatment: Results of a double blind, randomised clinical trial in morbidly obese females. PLoS One, 2014, 9(6), e98244. doi: 10.1371/journal.pone.0098244 PMID: 24905629
  220. Ogawa, K.; Hirose, S.; Nagaoka, S.; Yanase, E. Interaction between tea polyphenols and bile acid inhibits micellar cholesterol solubility. J. Agric. Food Chem., 2016, 64(1), 204-209. doi: 10.1021/acs.jafc.5b05088 PMID: 26651358
  221. Sakakibara, T.; Sawada, Y.; Wang, J.; Nagaoka, S.; Yanase, E. Molecular mechanism by which tea catechins decrease the micellar solubility of cholesterol. J. Agric. Food Chem., 2019, 67(25), 7128-7135. doi: 10.1021/acs.jafc.9b02265 PMID: 31150244
  222. Ashigai, H.; Taniguchi, Y.; Suzuki, M.; Ikeshima, E.; Kanaya, T.; Zembutsu, K.; Tomita, S.; Miyake, M.; Fukuhara, I. Fecal lipid excretion after consumption of a black tea polyphenol containing beverage-randomized, placebo-controlled, double-blind, crossover study. Biol. Pharm. Bull., 2016, 39(5), 699-704. doi: 10.1248/bpb.b15-00662 PMID: 26887502
  223. Hamauzu, Y.; Suwannachot, J. Non-extractable polyphenols and in vitro bile acid-binding capacity of dried persimmon (Diospyros kaki) fruit. Food Chem., 2019, 293, 127-133. doi: 10.1016/j.foodchem.2019.04.092 PMID: 31151592
  224. Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C.S. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice. Mol. Nutr. Food Res., 2018, 62(4), 1700696. doi: 10.1002/mnfr.201700696 PMID: 29278293
  225. Ikeda, I.; Yamahira, T.; Kato, M.; Ishikawa, A. Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J. Agric. Food Chem., 2010, 58(15), 8591-8595. doi: 10.1021/jf1015285 PMID: 20681647
  226. Ikeda, I.; Kobayashi, M.; Hamada, T.; Tsuda, K.; Goto, H.; Imaizumi, K.; Nozawa, A.; Sugimoto, A.; Kakuda, T. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J. Agric. Food Chem., 2003, 51(25), 7303-7307. doi: 10.1021/jf034728l PMID: 14640575

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024