Effect of brucellin conjugated with gold nanoparticles on the immune response and phagocytosis of brucella

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A conjugate of 15-nm gold nanoparticles with brucellin, a polysaccharide-protein complex isolated from the Brucella vaccine strain, was obtained. The obtained conjugate was used to vaccinate white mice. The drug was administered intraperitoneally three times with an interval of 7 days. After that, all animals were injected with a suspension of cells of the Brucella abortus 82 vaccine strain. Using a cell proliferative test, it was shown that in the group of animals immunized with a brucellin conjugate with gold nanoparticles, phagocytic cells and splenocytes had higher metabolic activity compared to the group immunized with the native antigen. Moreover, this trend was enhanced after the introduction of the vaccine strain. The highest antibody titer was observed in animals immunized with a brucellin conjugate with gold nanoparticles (1 : 2560 initially and 1 : 10240 after stimulation with the vaccine strain). It is important that during the opsonophagocytic reaction, the level of opsonizing antibodies was very high, which helped neutralize bacteria persisting in the animals.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Dykman

Institute of Biochemistry and Physiology of Plants and Microorganisms — Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: dykman_l@ibppm.ru
Ресей, Saratov, 410049

S. Staroverov

Institute of Biochemistry and Physiology of Plants and Microorganisms — Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: dykman_l@ibppm.ru
Ресей, Saratov, 410049

R. Vyrshchikov

Institute of Biochemistry and Physiology of Plants and Microorganisms — Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: dykman_l@ibppm.ru
Ресей, Saratov, 410049

Әдебиет тізімі

  1. Бухарин О.В. // Вестник Московского университета. Сер. 16. Биология. 2008. № 1. С. 6–13.
  2. Евдокимова Н.В., Черненькая Т.В. // Клин. микробиол. антимикроб. химиотер. 2013. Т. 15. № 3. С. 192–197.
  3. Bigger J.W. // Lancet. 1944. V. 244. P. 497–500. https://doi.org/10.1016/S0140-6736(00)74210-3
  4. Moyed H.S., Broderick S.H. // J. Bacteriol. 1986. V. 166. P. 399–403. https://doi.org/10.1128/jb.166.2.399-403.1986
  5. Costerton J.W., Stewart P.S., Greenberg E.P. // Science. 1999. V. 284. P. 1318–1322. https://doi.org/10.1126/science.284.5418.1318
  6. Бойченко М.Н., Кравцова Е.О., Буданова Е.В. Белая О.Ф., Малолетнева Н.В., Умбетова К.Т. // Эпидемиология и инфекционные болезни. 2020. Т. 25. № 1. С. 35–40. https://doi.org/10.17816/EID35180
  7. Бойченко М.Н., Кравцова Е.О., Зверев В.В. // Журн. микробиол., эпидемиол. и иммунобиол. 2019. № 5. С. 61–72. https://doi.org/10.36233/0372-9311-2019-5-61-72
  8. Pappas G., Akritidis N., Bosilkovski M., Tsianos E. // N. Engl. J. Med. 2005. V. 352. P. 2325–2336. https://doi.org/10.1056/NEJMra050570
  9. Atluri V.L., Xavier M.N., de Jong M.F., den Hartigh A.B., Tsolis R.M. // Annu. Rev. Microbiol. 2011. V. 65. P. 523–541. https://doi.org/10.1146/annurev-micro-090110-102905
  10. Al Dahouk S., Nöckler K. // Expert Rev. Anti-Infect. Ther. 2011. V. 9. P. 833–845. https://doi.org/10.1586/eri.11.55
  11. Hans R., Yadav P.K., Zaman M.B., Poolla R., Thavaselvam D. // Front. Nanotechnol. 2023. V. 5. 1132783. https://doi.org/10.3389/fnano.2023.1132783
  12. Galińska E.M., Zagórski J. // Ann. Agric. Environ. Med. 2013. V. 20. P. 233–238.
  13. Староверов С.А., Дыкман Л.А. // Российские нанотехнологии. 2013. Т. 8. № 11-12. С. 118–122. https://doi.org/10.1134/S1995078013060165
  14. Ko J., Splitter G.A. // Clin. Microbiol. Rev. 2003. V. 16. P. 65–78. https://doi.org/10.1128/cmr.16.1.65-78.2003
  15. Ficht T.A., Kahl-McDonagh M.M., Arenas-Gamboa A.M., Rice-Ficht A.C. // Vaccine. 2009. V. 27. Suppl. 4. P. D40–D43. https://doi.org/10.1016/j.vaccine.2009.08.058
  16. Avila-Calderon E.D., Lopez-Merino A., Sriranganathan N., Boyle S.M., Contreras-Rodriguez A. // Biomed. Res. Int. 2013. V. 2013. 743509. https://doi.org/10.1155/2013/743509
  17. Wang Z., Wu Q. // Curr. Pharm. Biotechnol. 2013. V. 14. P. 887–896. https://doi.org/10.2174/1389201014666131226123016
  18. Abkar M., Lotfi A.S., Amani J., Eskandari K., Ramandi M.F., Salimian J. et al. // Vet. Res. Commun. 2015. V. 39. P. 217–228. https://doi.org/10.1007/s11259-015-9645-2
  19. Lopes Chaves L., Dourado D., Prunache I.-B., Manuelle Marques da Silva P., Tacyana dos Santos Lucena G., Cardoso de Souza Z. et al. // Int. J. Pharm. 2024. V. 659. 124162. https://doi.org/10.1016/j.ijpharm.2024.124162
  20. Zhuo Y., Zeng H., Su C., Lv Q., Cheng T., Lei L. // J. Nanobiotechnology. 2024. V. 22. 480. https://doi.org/10.1186/s12951-024-02758-0
  21. Liang J., Yao L., Liu Z., Chen Y., Lin Y., Tian T. // Small. 2025. V. 21. № 1. 2407649. https://doi.org/10.1002/smll.202407649
  22. Goetz M., Thotathil N., Zhao Z., Mitragotri S. // Bioeng. Transl. Med. 2024. V. 9. № 4. e10663. https://doi.org/10.1002/btm2.10663
  23. Fries C.N., Curvino E.J., Chen J.-L., Permar S.R., Fouda G.G., Collier J.H. // Nat. Nanotechnol. 2021. V. 16. № 4. P. 1–14. https://doi.org/10.1038/s41565-020-0739-9
  24. Rajaiah P. // Discov. Med. 2024. V. 1. 58. https://doi.org/10.1007/s44337-024-00080-0
  25. Badten A.J., Torres A.G. // Vaccines. 2024. V. 12. 313. https://doi.org/10.3390/vaccines12030313
  26. Dykman L.A. // Expert Rev. Vaccines. 2020. V. 19. P. 465–477. https://doi.org/10.1080/14760584.2020.1758070
  27. Sengupta A., Azharuddin M., Al-Otaibi N., Hinkula J. // Vaccines. 2022. V. 10. 505. https://doi.org/10.3390/vaccines10040505
  28. Miauton A., Audran R., Besson J., Hajjami H.-M.-E., Karlen M., Warpelin- Decrausaz L. et al. // eBioMedicine. 2024. V. 99. 104922. https://doi.org/10.1016/j.ebiom.2023.104922
  29. Загоскина Т.Ю., Марков Е.Ю., Калиновский А.И., Голубинский Е.П. // Журн. микробиол., эпидемиол. и иммунобиол. 2001. № 3. С. 65–69.
  30. Staroverov S.A., Vyrshchikov R.D., Bogatyrev V.A., Dykman L.A. // Int. Immunopharmacol. 2024. V. 133. 112121. https://doi.org/10.1016/j.intimp.2024.112121
  31. Frens G. // Nat. Phys. Sci. 1973. V. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
  32. De Jesus A., Pusec C.M., Nguyen T., Keyhani-Nejad F., Gao P., Weinberg S.E., Ardehali H. // STAR Protoc. 2022. V. 3. 101668. https://doi.org/10.1016/j.xpro.2022.101668
  33. Silver A.C. // J. Vis. Exp. 2018. V. 137. e58022. https://doi.org/10.3791/58022-v
  34. Berridge M.V., Herst P.M., Tan A.S. // Biotechnol. Annu. Rev. 2005. V. 11. P. 127–152. https://doi.org/10.1016/S1387-2656(05)11004-7
  35. Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. P. C98–C101. https://doi.org/10.12968/hmed.2016.77.7.C98
  36. Дыкман Л.А., Богатырев В.А. // Биохимия. 1997. Т. 62. № 4. С. 411–418.
  37. Hufnagel M., Koch S., Kropec A., Huebner J. // Int. J. Food Microbiol. 2003. V. 88. № 2–3. P. 263–267. https://doi.org/10.1016/S0168-1605(03)00189-2
  38. Hu B.T., Kirch C., Harris S., Hildreth S.W., Madore D.V., Quataert S.A. // Clin. Diagn. Lab. Immunol. 2005. V. 12. № 2. P. 287–295. https://doi.org/10.1128/CDLI.12.2.287-295.2005
  39. Maleki M., Salouti M., Ardestani M.S., Talebzadeh A. // Artif. Cells Nanomed. Biotechnol. 2019. V. 47. P. 4248–4256. https://doi.org/10.1080/21691401.2019.1687490
  40. Dwyer M., Gadjeva M. // Methods Mol. Biol. 2014. V. 1100. P. 373–379. https://doi.org/10.1007/978-1-62703-724-2_32
  41. Salehi S., Hohn C.M., Penfound T.A., Dale J.B. // mSphere. 2018. V. 3. e00617–е00618. https://doi.org/10.1128/msphere.00617-18
  42. Leung S., Collett C.F., Allen L., Lim S., Maniatis P., Bolcen S.J. et al. // Vaccines. 2023. V. 11. 1703. https://doi.org/10.3390/vaccines11111703
  43. Kizilbash N., Suhail N., Soliman M., Elmagzoub R.M., Marsh M., Farooq R. // Curr. Pharm. Biotechnol. 2025. https://doi.org/10.2174/0113892010363803250110052220 (in press)
  44. Mandal S. // JETIR. 2025. V. 12. P. a959– a974.
  45. Teimouri H., Taheri S., Saidabad F.E., Nakazato G., Maghsoud Y., Babaei A. // Biomed. Pharmacother. 2025. V. 183. 117844. https://doi.org/10.1016/j.biopha.2025.117844

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Determination of the proliferative activity of peritoneal macrophages (a) and splenocytes (b) during immunization of animals with brucellin according to various schemes (OD is the concentration of formazan per cell, ng; K is the control, PBS).

Жүктеу (86KB)
3. Fig. 2. Determination of the proliferative activity of peritoneal macrophages (a) and splenocytes (b) during immunization of animals with brucellin after injection of B. abortus 82 strain cells into animals.

Жүктеу (97KB)
4. Fig. 3. Dot immunoanalysis of brucellin using antisera obtained by immunizing animals with Ag + GNP (a), Ag (b), GNP (c), PBS (d); labeling - conjugate of GNP with staphylococcal protein A.

Жүктеу (225KB)
5. Fig. 4. The number of CFU detected as a result of the opsonophagocytic reaction of mouse sera after immunization with brucellin (a) and subsequent injection of B. abortus 82 strain cells into animals (b).

Жүктеу (108KB)

© Russian Academy of Sciences, 2025