Degradation of dibutyl phthalate by halotolerant strain Pseudarthrobacter sp. NKDBFgelt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Dibutyl phthalate (DBP) is the di-n-butyl ester of ortho-phthalic acid, widely used in the chemical industry as a plasticizer and is a common environmental pollutant. The ability of the halotolerant strain Pseudarthrobacter sp. NKDBFgelt (VKM Ac-3035) isolated from the rhizosphere soil of a salt mining area (Perm Krai, Russia) to use DBP as the sole source of carbon and energy was studied. The strain NKDBFgelt was capable of growth on DBP and ortho-phthalic acid (PA) at high salinity (up to 30 g/L and 50 g/L NaCl, respectively), as well as growth on DBP at a high concentration — up to 9 g/L. The strain degraded 75.2% DBP (initial concentration 200 mg/L DBP) by 72 h of cultivation in the absence of salt. With increased salinity of the medium (30–70 g/l NaCl), DBP degradation was recorded at a level of 66.95–27.8%. Analysis of the genome of the strain NKDBFgelt revealed clusters of genes involved in the degradation of DBP, PA, benzoic acid, as well as genes encoding enzymes of the main degradation pathways of aromatic compounds. The halotolerant strain Pseudarthrobacter sp. NKDBFgelt has a high degradative potential and is promising in the development of new biotechnologies for the restoration of soils contaminated with phthalic acid esters.

Full Text

Restricted Access

About the authors

O. V. Yastrebova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: olyastr@mail.ru
Russian Federation, Perm, 614081

A. A. Pyankova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: olyastr@mail.ru
Russian Federation, Perm, 614081

A. V. Nazarov

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: olyastr@mail.ru
Russian Federation, Perm, 614081

Yu. I. Nechaeva

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: olyastr@mail.ru
Russian Federation, Perm, 614081

E. S. Korsakova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: olyastr@mail.ru
Russian Federation, Perm, 614081

E. G. Plotnikova

Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences

Email: olyastr@mail.ru
Russian Federation, Perm, 614081

References

  1. Naveen K.V., Saravanakumar K., Zhang X., Sathiyaseelan A., Wang M.-H. // Environ. Res. 2022. V. 214. № 1. Article 113781. https://doi.org/10.1016/j.envres.2022.113781
  2. Das M.T., Kumar S.S., Ghosh P., Shah G., Malyan S.K., Bajar S. et al. // J. Hazard. Mater. 2021. V. 409. Article 124496. https://doi.org/10.1016/j.jhazmat.2020.124496
  3. Liang D.-W., Zhang T., Fang H.H.P., He J. // Appl. Microbiol. Biotechnol. 2008. V. 80. № 2. P. 183–198. https://doi.org/10.1007/s00253-008-1548-5
  4. Kong X., Jin D.C., Tai X., Yu H., Duan G.L., Yan X.L. et al. // Sci. Total. Environ. 2019. V. 667. P. 691–700. https://doi.org/10.1016/j.scitotenv.2019.02.385
  5. Zorníkova G., Jarosova A., Hrivna L. // Acta Univ. Agric. Et. Silvic. Mendel. Brun. 2011. V. 59. P. 233–238. https://doi.org/10.11118/actaun201159030233
  6. Yue D.M., Yu X.Z., Li Y.H. // Int. J. Environ. Sci. Technol. 2015. V. 12. P. 3009–3016. https://doi.org/10.1007/s13762-014-0704-y
  7. Gao M., Dong Y., Zhang Z., Song Z. // Environ. Pollut. 2020. V. 265. Article 114800. https://doi.org/10.1016/j.geoderma.2019.114126
  8. Azaizeh H., Castro P.M.L., Kidd P. // Organic Xenobiotics and Plants. / Eds. P. Schröder, C. D. Collins. Plant Ecophysiology. V. 8. Springer, 2011. P. 191–215. https://doi.org/10.1007/978-90-481-9852-8_9
  9. Бачурин Б.А., Одинцова Т.А. Современные экологические проблемы Севера. Апатиты: Изд-во Кольского НЦ РАН, 2006. T. 2. С. 7–9.
  10. Корсакова Е. С., Шестакова Е. А., Хайрулина Е. А., Назаров А. В. // Российский иммунологический журнал. 2015. Т. 9 (18). № 2 (1). С. 591–593.
  11. Cheng J.J., Liu Y.A., Wan Q., Yuan, L., Yu X.Y. // Sci. Total Environ. 2018. V. 640. P. 821–829. https://doi.org/10.1016/j.scitotenv.2018.05.336
  12. Patil, N.K., Karegoudar, T.B. // World J. Microbiol. Biotechnol. 2005. V. 21. № 8–9. P. 1493–1498. https://doi.org/10.1007/s11274-005-7369-0
  13. Jin D., Kong X., Liu H., Wang X., Deng Y., Jia M., Yu X. // Int. J. Mol. Sci. 2016. V. 17. Article 1012. https://doi.org/10.3390/ijms17071012
  14. Lu Y., Tang F., Wang Y., Zhao J., Zeng X., Luo Q., Wang L. // J. Hazard. Mater. 2009. V. 168. № 2–3. P. 938–943. https://doi.org/10.1016/j.jhazmat.2009.02.126
  15. Kumar V., Maitra S.S. // Biotech. 2016. V. 6. № 200. https://doi.org/10.1007/s13205-016-0524-5
  16. Liu T., Li J., Qiu L., Zhang F., Linhardt R.J., Zhong W. // Biotechnol. Bioeng. 2020. V. 117. P. 3712–3726. https://doi.org/10.1002/bit.27524
  17. Nandi M., Paul T., Kanaujiya D.K., Baskaran D., Pakshirajan K., Pugazhenthi G. // Water Supply. 2021. V. 21. № 5. P. 2084–2098. https://doi.org/10.2166/ws.2020.347
  18. Wen Z.D., Gao D.-W., Wu W.-M. // Appl. Microbiol. Biotechnol. 2014. V. 98. № 10. Р. 4683–4690. https://doi.org/10.1007/s00253-014-5568-z
  19. Chen F., Chen Y., Chen C., Feng L., Dong Y., Chen J., et al.. // Sci. Total Environ. 2021. V. 794. Article 148719. https://doi.org/10.1016/j.scitotenv.2021.148719
  20. Shariati S., Ebenau-Jehle C., Pourbabaee A.A., Alikhani H.A., Rodriguez-Franco M., Agne M. et al. // Biodegradation. 2022. V. 33. P. 59–70. https://doi.org/10.1007/s10532-021-09966-7
  21. Ren C., Wang Y., Wu Y., Zhao H.-P., Li L. // Biodegradation. 2024. V. 35(1). P. 87–99. https://doi.org/10.1007/s10532-023-10032-7
  22. Eaton R.W. // J. Bacteriol. 2001. V. 183. № 12. P. 3689–3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001
  23. Jin D., Kong X., Cui B., Bai Z., Zhang H. // Int. J. Mol. Sci. 2013. V. 14. P. 24046–24054. https://doi.org/10.3390/ijms141224046
  24. Xu X.-R., Li H.-B., Gu J.-D. // Ecotoxicol. Environ. Saf. 2007. V. 68. P. 379–385. https://doi.org/10.1016/j.ecoenv.2006.11.012
  25. Yang T., Ren L., Jia Y., Fan S., Wang J., Wang J. et al. // Int. J. Environ. Res. Public Health. 2018. V. 15. Article 964. https://doi.org/10.3390/ijerph15050964
  26. Корсакова Е.С., Пьянкова А.А., Плотникова Е.Г. // Вестник Пермского университета. Серия Биология. 2023. № 4. С. 349‒355. https://doi.org/10.17072/1994-9952-2023-4-349-355
  27. Raymond R.L. // Developments in Industrial Microbiology. 1961. V. 2. № 1. P. 23–32.
  28. Нетрусов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.
  29. Prjibelski A., Antipov D., Meleshko D., Lapidus, A., Korobeynikov A. // Current Protocols in Bioinformatics. 2020. V. 70. № 1. e102.
  30. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK. 2010.
  31. Bolger A.M., Lohse M., Usadel B. // Bioinformatics. 2014. V. 30. № 15. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  32. Antipov D., Hartwick N., Shen M., Raiko M., Lapidus A., Pevzner P. // Bioinformatics. 2016. V. 32. № 22. P. 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
  33. Schwengers O., Jelonek L., Dieckmann M.A., Beyvers S., Blom J., Goesmann A. // Microbial Genomics. 2021. V. 7. № 11. Article 000685. https://doi.org/10.1099/mgen.0.000685.
  34. Tatusov R., Galperin M., Natale D., Koonin E. // Nucleic Acids Res. 2000. V. 28. № 1. P. 6–33. https://doi.org/10.1093/nar/28.1.33
  35. Kanehisa M., Goto S., Sato Y., Kawashima M., Furumichi M., Tanabe M. // Nucleic Acids Res. 2014. V. 42. № D1. P. D199–D205. https://doi.org/10.1093/nar/gkt1076
  36. Li C., Liu C., Li R., Liu Y., Xie J., Li B. //Toxics. 2022. V. 10. Article 532. https://doi.org/10.3390/toxics10090532
  37. Кашнер Д. Жизнь микробов в экстремальных условиях. М.: Мир, 1981. 365 с.
  38. Latif A., Ahmad R., Ahmed J., Shah M. M., Ahmad R., Hassan A. // Sci. Hortic. 2023. V. 319. Article 112115. https://doi.org/10.1016/j.scienta.2023.112115
  39. Issifu M., Songoro E.K., Onguso J., Ateka E.M., Ngumi V.W. // Bacteria. 2022. V. 1. P. 191–206. https://doi.org/10.3390/bacteria1040015
  40. Li J., Peng W, Yin X., Wang X., Liu Z., Liu Q. et al.// J. Hazard. Mater. 2024. V. 465. Article 133138. https://doi.org/10.1016/j.jhazmat.2023.133138
  41. Ren L., Lin Z., Liu H., Hu H. // Appl. Microbiol. Biotechnol. 2018. V. 102. № 3. P. 1085–1096. https://doi.org/10.1007/s00253-017-8687-5
  42. Iwata M., Imaoka T., Nishiyama T., Fujii, T. // J. Biosci. Bioeng. 2016. V. 122. № 2. P. 140–145. https://doi.org/10.1016/j.jbiosc.2016.01.008
  43. Stanislauskienė R., Rudenkov M., Karvelis L. // Biologija. 2011. V. 57. № 3. P. 45–54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Growth of the NKDBFgelt strain in MSR with different concentrations of DBP (g/l): 1 — 1.0; 2 — 3.0; 3 — 5; 4 — 7.0; 5 — 9.0.

Download (83KB)
3. Fig. 2. Growth of the NKDBFgelt strain in BSR with different NaCl concentrations (g/l): 1 — without NaCl; 2 — 70; 3 — 90; 4 — 100; 5 — 110; 6 — 120.

Download (86KB)
4. Fig. 3. Growth of the NKDBFgelt strain in MSR with OFC with different NaCl concentrations (g/l): 1 — without NaCl; 2 — 30; 3 — 50; 4 — 70.

Download (81KB)
5. Fig. 4. Decomposition of DBP (%, 1–4) and OFA content (mg/L, 1′–4′) in the medium during cultivation of the NKDBFgelt strain at different NaCl concentrations: 1, 1′ — without NaCl; 2, 2′ — 30; 3, 3′ — 50; 4, 4′ — 70 g/L.

Download (160KB)
6. Fig. 5. Scheme of the proposed degradation pathway of dibutyl phthalate by the strain Pseudarthrobacter sp. NKDBFgelt.

Download (278KB)
7. Fig. 6. Clusters of genes key for DBP degradation in the genome of Pseudarthrobacter sp. NKDBFgelt.

Download (262KB)
8. Fig. 7. Comparative analysis of pht-clusters of genes of strains Arthrobacter keyseri 12B (a), Pseudarthrobacter sp. NKDBFgelt (b), Pseudarthrobacter defluvii E5 (c), Arthrobacter sp. 68b (d).

Download (323KB)

Copyright (c) 2025 Russian Academy of Sciences