Optimization of 1,3-butanediol biosynthesis from glucose through the inverted fatty acid β-oxidation pathway by recombinant Escherichia coli strains
- Authors: Gulevich A.Y.1, Skorokhodova A.Y.1, Debabov V.G.1
-
Affiliations:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Issue: Vol 61, No 3 (2025)
- Pages: 260-268
- Section: Articles
- URL: https://rjraap.com/0555-1099/article/view/689329
- DOI: https://doi.org/10.31857/S0555109925030046
- EDN: https://elibrary.ru/FNQOJF
- ID: 689329
Cite item
Abstract
In derivatives of Escherichia coli strain MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, devoid of mixed-acid fermentation pathways, the expression of native L-1, 2-propanediol oxidoreductase and NADPH-dependent aldehyde reductase genes, fucO and yqhD, was enhanced, and Clostridium saccharoperbutylacetonicum butyraldehyde dehydrogenase gene, bld, was expressed. The ability to biosynthesize 1,3-butanediol from glucose resulting from functional reversal of fatty acid β-oxidation was ensured in the recombinants due to the increased expression of the atoB and fadB genes encoding acetyl-CoA C-acetyltransferase and bifunctional (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase. Anaerobic substrate to target product conversion of 0.2 mol/mol was achieved with ~4 mM 1,3-butanediol accumulation. When the intracellular availability of NADH equivalents was increased due to constitutive expression of genes of pyruvate dehydrogenase complex, aceEF-lpdA, the conversion of glucose to 1,3-butanediol increased up to ~0.3 mol/mol with accumulation of the target product at the level of ~7 mM. Enhanced expression of the membrane-bound transhydrogenase genes, pntAB, led to the synthesis of 9.5 mM 1,3-butanediol by the yqhD-overexpressing strain with a yield of 0.4 mol/mol.
Keywords
Full Text

About the authors
A. Y. Gulevich
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Author for correspondence.
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312
A. Y. Skorokhodova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312
V. G. Debabov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312
References
- Matsuyama A., Yamamoto H., Kawada N., Kobayashi Y. // J. Mol. Catal. B: Enzym. 2001. V. 11. № 4–6. P. 513–521.
- Kataoka N., Vangnai A.S., Tajima T., Nakashimada Y., Kato J. // J. Biosci. Bioeng. 2013. V. 115. № 5. P. 475–480.
- Sun D., Li Y., Yang C., Su J., Yamada Y., Sato S. // Fuel. Process. Technol. 2020. V. 197. 106193. https://doi: 10.1016/j.fuproc.2019.106193
- Patel R.N. // Stereoselective Biocatalysis, N.Y.: Marcel Dekker, Inc., 2000. 932 p.
- Boaz N.W., Ponasik J.A., Large S.E. // Tetrahedron Lett. 2006. V. 47. № 24. P. 4033–4035.
- Yoo J.I., Sohn Y.J., Son J., Jo S.Y., Pyo J., Park S.K., et al. // Biotechnol. J. 2022. V. 17. № 3. e2000451. https://doi: 10.1002/biot.202000451
- Nemr K., Müller J.E.N., Joo J.C., Gawand P., Choudhary R., Mendonca B., et al. // Metab. Eng. 2018. V. 48. P. 13–24.
- Kim T., Stogios P.J., Khusnutdinova A.N., Nemr K., Skarina T., Flick R. et al. // J. Biol. Chem. 2020. V. 295. № 2. P. 597–609.
- Liu Y., Cen X., Liu D., Chen Z. // ACS Synth. Biol. 2021. V. 10. № 8. P. 1946–1955.
- Islam T., Nguyen-Vo T.P., Gaur V.K., Lee J., Park S. // Bioresour. Technol. 2023. V. 76. 128911. https://doi: 10.1016/j.biortech.2023.128911
- Гулевич А.Ю., Скороходова А.Ю., Стасенко А.А., Шакулов Р.С., Дебабов В.Г. // Прикл. биохимия и микробиология. 2016. Т. 52. № 1. С. 21–29.
- Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Биотехнология. 2019. Т. 35. № 5. С. 12–19.
- Гулевич А.Ю., Скороходова А.Ю., Моржакова А.А., Антонова С.В., Сухоженко А.В., Шакулов Р.С., Дебабов В.Г. // Прикл. биохимия и микробиология. 2012. Т. 48. № 4. С. 383–388.
- Sambrook J., Fritsch E., Maniatis T. // Molecular Cloning: a Laboratory Manual, 2 nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
- Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2021. Т. 57. № 2. С. 117–126.
- Datsenko K.A., Wanner B.L. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 12. Р. 6640–6645.
- Каташкина Ж.И., Скороходова А.Ю., Зименков Д.В., Гулевич А.Ю., Минаева Н.И., Дорошенко В.Г. и др. // Молекулярная биология. 2005. Т. 39. № 5. С. 823–831.
- Гулевич А.Ю., Скороходова А.Ю., Ермишев В.Ю., Крылов А.А., Минаева Н.И., Полонская З.М. и др. // Молекулярная биология. 2009. Т. 43. № 3. С. 547–557.
- Gulevich A.Y., Skorokhodova A.Y., Sukhozhenko A.V., Shakulov R.S., Debabov V.G. // Biotechnol. Lett. 2012. V. 34. № 3. P. 463–469.
- Clomburg J.M., Vick J.E., Blankschien M.D., Rodríguez-Moyá M., Gonzalez R. // ACS Synth. Biol. 2012. V. 1. P. 541–554.
- Zhuang Z., Song F., Zhao H., Li L., Cao J., Eisenstein E. et al. // Biochemistry. 2008. V. 47. № 9. P. 2789–2796.
- Chen M., Ma X., Chen X., Jiang M., Song H., Guo Z. // J. Bacteriol. 2013. V. 195. № 12. P. 2768–2775.
- Clark D.P., Cronan J.E. // EcoSal Plus. 2005. V. 1. № 2. 10.1128/ecosalplus.3.4.4' target='_blank'>https://doi: 10.1128/ecosalplus.3.4.4
- Soini J., Falschlehner C., Liedert C., Bernhardt J., Vuoristo J., Neubauer P. // Microb. Cell. Fact. 2008. V. 7. № 30. 10.1186/1475-2859-7-30' target='_blank'>https://doi: 10.1186/1475-2859-7-30
- Sauer U., Canonaco F., Heri S., Perrenoud A., Fischer E. // J. Biol. Chem. 2004. V. 279. № 8. P. 6613–6619.
Supplementary files
