Prospects for application of Bacillus amyloliquefaciens in biocontrol, metabolic engineering and protein expression (review)
- Authors: Bataeva Y.V.1, Pokhilenko V.D.2, Dunaicev I.A.2, Tekutov A.R.2, Kalmantaev T.A.2
-
Affiliations:
- Russian State Agrarian University — Moscow Timiryazev Agricultural Academy (RSAU — MTAA)
- Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor
- Issue: Vol 61, No 3 (2025)
- Pages: 221-235
- Section: Articles
- URL: https://rjraap.com/0555-1099/article/view/689267
- DOI: https://doi.org/10.31857/S0555109925030016
- EDN: https://elibrary.ru/FMZTNY
- ID: 689267
Cite item
Abstract
The article presents the characteristics, composition of metabolites and biotechnological properties of Bacillus amyloliquefaciens including structure, biochemical, ecological, genetic properties, application in plant growing, food industry, medicine, as an alternative to conventional antibiotics. Furthermore, the review addresses environmental applications of B. amyloliquefaciens such as bioprotection in vegetable storage, as plant growth promoters and protectors, and as bioremediation agents. The review aims to understand the characteristics, genetic tools, and metabolic capabilities of B. amyloliquefaciens, highlighting its potential as a base cell for synthetic biology, metabolic engineering, and protein expression. We discuss the role of the bacteria in the production of chemicals, enzymes, and other industrial bioproducts, as well as their applications in medicine, such as combating pathogenic bacteria and promoting gut health. In agriculture, B. amyloliquefaciens has shown potential as a biofertilizer, biocontrol agent with antifungal, antibacterial, insecticidal, antiviral properties, and stress tolerance enhancer for various crops. Despite its many potential applications, B. amyloliquefaciens remains underexplored. The review highlights the need for further research and development of advanced engineering methods and gene editing technologies designed specifically for B. amyloliquefaciens, which will ultimately allow its full potential to be realized in scientific and industrial contexts.
Full Text

About the authors
Yu. V. Bataeva
Russian State Agrarian University — Moscow Timiryazev Agricultural Academy (RSAU — MTAA)
Author for correspondence.
Email: aveatab@mail.ru
Department of Biotechnology
Russian Federation, Moscow, 127434V. D. Pokhilenko
Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor
Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279
I. A. Dunaicev
Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor
Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279
A. R. Tekutov
Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor
Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279
T. A. Kalmantaev
Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor
Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279
References
- Cotter P.D., Ross R.P., Hill C. // Nat. Rev. Microbiol. 2013. V. 11. P. 95–105.
- Gabrielsen C., Brede D.A., Nes I.F., Diep D.B. // Appl. Environ. Microbiol. 2014. V. 80. № 22.Р. 6854–6862. https://doi.org/10.1128/AEM.02284-14
- Field D., Cotter P.D., Hill C., Ross R.P. // Front. Microbiol. 2015. V. 6. P. 1363. https://doi.org/10.3389/fmicb.2015.01363
- Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. // Front. Microbiol. 2019. V. 10. P. 302. https://doi.org/10.3389/fmicb.2019.00302
- Wang Y., Zhu X., Bie X., Lu F., Zhang C., Yao S. et al. // LWT–Food Science and Technology. 2014. V. 56. № 2. P. 502–507. https://doi.org/10.1016/j.lwt.2013.11.041
- Cladera-Olivera F., Caron G.R., Brandelli A. // Lett. Appl.Microbiol. 2004. V. 38. № 4. Р. 251–256. https://doi.org/10.1111/j.1472-765X.2004.01478.x
- Лаптев Г.Ю., Йылдырым Е.А., Дуняшев Т.П., Ильина Л.А., Тюрина Д.Г., Филиппова В.А. и др. // Сельскохоз. биология. 2020. Т. 55. № 4. С. 816–829. https://doi.org/10.15389/agrobiology.2020.4.816rus
- Черепанова Е.А., Галяутдинов И.В., Бурханова Г.Ф., Максимов И.В. // Прикл. биохимия и микробиология. 2021. Т. 57. № 5. С. 496–503. https://doi.org/10.31857/S0555109921050032
- Cherif A., Chehimi S., Limem F., Hansen B.M., Hendriksen N.B., Daffonchio D. et al. // J. Appl. Microbiol. 2003. V. 95. № 5. Р. 990–1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
- Stein T. // Mol. Microbiol. 2005. V. 56. № 4. P. 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Pattnaik P., Glover S., Batish V.K. // Microbiol. Res. 2005. V. 160. P. 213–218.
- Aunpad R., Na-Bangchang K. // Curr. Microbiol. 2007. T. 55. № 4. Р. 308–313. https://doi.org/10.1007/s00284-006-0632-2
- Hammami R., Fernandez B., Lacroix C., Fliss I. // Cell. Mol. Life Sci. 2013. V. 70. № 16. Р. 2947–2967. https://doi.org/10.1007/s00018-012-1202-3
- Stoica R.M., Moscovici M., Tomulescu C., Cășărică A., Băbeanu N., Popa O. et al. // Romanian Biotech. Letters. 2019. V. 24. № 6. P. 1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119
- Sumi C.D., Yang B.W., Yeo In-Cheol, Hahm Y.T. // Canadian J. Microbiol. 2015. V. 61. № 2. P. 93–103. https://doi.org/10.1139/cjm-2014-0613
- Похиленко В.Д., Герасимов В.Н., Жиглецова С.К., Калмантаев Т.А., Чукина И.А., Миронова Р.И. и др. // Микробиология. 2023. Т. 92. № 6. С. 631–636. https://doi.org/10.31857/S0026365623600098
- Raheem N., Straus S.K. // Front. Microbiol. 2019. V. 10, Art. 2866. https://doi.org/10.3389/fmicb.2019.02866
- Moravej H., Moravej Z., Yazdanparast M., Heiat M., Mirhosseini A., Moosazadeh Moghaddam M. et al. // Microbial Drug Resistance. 2018. V. 24. № 6. Р. 747–767. https://doi.org/10.1089/mdr.2017.0392
- Rotem S., Mor A. // Biochim. Biophys. Acta. 2009. V. 1788. № 8. С. 1582-1592. https://doi.org/10.1016/j.bbamem.2008.10.020
- Jack R.W., Tagg J.R., Ray B. // Microbiol Rev. 1995. V. 59. № 2. Р. 171–200. https://doi.org/10.1128/mr.59.2.171-200.1995
- Zakataeva N.P., Nikitina O.V., Gronskiy S.V., Romanenkov D.V., Livshits V.A. // Appl. Microbiol. Biotechnol. 2010. V. 85. P. 1201–1209.
- Yang L., Wang H., Lv Y., Bai Y., Luo H., Shi P. et al. // J. Agric. Food Chem. 2016. V. 64. P. 78–84.
- Feng J., Gu Y., Quan Y., Cao M., Gao W., Zhang W. et al. // Metab. Eng. 2015. V. 32. P. 106–115.
- Prajapati V.S., Ray S., Narayan J., Joshi C.C., Patel K.C., Trivedi U.B. et al. // Biotech. 2017. V. 7. P. 372. https://doi.org/10.1007/s13205-017-1005-1
- Prajapati V.S., Trivedi U.B., Patel K.C. // Biotech. 2015. V. 5. P. 211–220. https://doi.org/10.1007/s13205-014-0213-1
- Geraldi A., Famunghui M., Abigail M., Siona Saragih C.F., Febitania D., Elmarthenez H. et al. // BIO Integration. 2022. V. 3. № 3. Р. 132–137. https://doi.org/10.15212/bioi-2022-0005
- Kaspar F., Neubauer P., Gimpel M. // J. Natural Products. 2019. V. 82. № 7. P. 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110, PubMed: 31287310
- Bataeva Yu., Magzanova D., Baimukhambetova A., Grigorian L., Vilkova D. // International Scientific Forum Caspian 2021: Ways of Sustainable Development. 2022. V. 2. P. 006. EDN QVCLVB https://doi.org/10.56199/dpcsebm.momz3523
- Palma L., Munoz D., Berry C., Murillo J., de Escudero I.R., Caballero P. // Toxins. 2014. V. 6. P. 3144–3156. https://doi.org/10.3390/toxins6113144
- Rashid M.H., Khan A., Hossain M.T., Chung Y.R. // Front. Plant Sci. 2017. V. 8. P. 211. https://doi.org/10.3389/fpls.2017.00211
- Abdalla O.A., Bibi S., Zhang S. // Plant Protection. 2017. V. 50. № 11–12. P. 584–597.
- Zalila-Kolsi I., Ben-Mahmoud A., Al-Barazie R. // Microorganisms. 2023. V. 11. Art. 2215. https://doi.org/10.3390/microorganisms11092215
- Bizani D., Dominguez A.P.M., Brandelli A. // Lett. Appl. Microbiol. 2005. V. 41. № 3. Р. 269–273. https://doi.org/10.1111/j.1472-765X.2005.01748.x
- Xie J., Zhang R., Shang C., Guo Y. // African J. Biotechnol. 2009. V. 8. P. 5611–5619.
- Lin C., Tsai C.H., Chen P.Y., Wu C.Y., Chang Y.L., Yang Y.L. et al. // PLOS ONE. 2018. V. 13. № 4. Art. e0196520. https://doi.org/10.1371/journal.pone.0196520
- Xie Y.D., Peng Q.J., Ji Y.Y., Xie A.L., Yang L., Mu S.Z. et al. // Front. Microbiol. 2021. V. 12. Art. 645484. https://doi.org/10.3389/fmicb.2021.645484А
- Cai D., Rao Y., Zhan Y., Wang Q., Chen S. // Microbiology. 2019. V. 126. P. 1632–1642. https://doi.org/10.1111/jam.14192
- Oren A., Garrity G.M. // Int. J. Syst. Evol. Microbiol. 2021. V. 71. Art. 005056. https://doi.org/10.1099/ijsem.0.005056
- Gibbons N.E., Murray R.G.E. // Int. J. Syst Bacteriol. 1978. V. 28. P. 1–6.
- Fukumoto J. // Nogeikagaku Kaishi. 1943. V. 19. P. 487–503.
- Priest F.G., Goodfellow M., Shute L.A., Berkeley R.C.W. // Int. J. Syst. Bacteriol. 1987.V. 37. № 1. P. 69–71.
- Ngalimat M.S., Yahaya R.S.R., Baharudin M.M.A.-a., Yaminudin S.M., Karim M., Ahmad S.A. et al. // Microorganisms. 2021. V. 9. Art. 614. https://doi.org/10.3390/ microorganisms9030614
- Su Y.T., Liu C., Long Z., Ren H., Guo X.H. // Probiotics Antimicrob. Proteins. 2019. V. 11. P. 921–930.
- Zalila-Kolsi I., Kessentini S., Tounsi S., Jamoussi K. // Microorganisms. 2022. V. 10. Art. 830. https://doi.org/10.3390/microorganisms10040830
- Ye M., Sun L., Yang R., Wang Z., Qi K. // R. Soc. Open Sci. 2017. V. 4. Art. 171012. https://doi.org/10.1098/rsos.171012
- Gamez R.M., Rodríguez F., Bernal J.F., Agarwala R., Landsman D., Mariño-Ramírez L. // Genome Announc. 2015. V. 3. № 6. Art. 01391-15. https://doi.org/10.1128/genomeA.01391-15
- Sevugapperumal N., Prajapati V.S., Murugavel V., Perumal R. // Front. Genet. 2021. V. 12. Art. 704165. https://doi.org/10.3389/fgene.2021.704165
- Chung S., Kong H., Buyer J.S., Lakshman D.K., Lydon J., Kim S.D. et al. // Appl. Microbiol. Biotechnol. 2008. V. 80. P. 115–123. https://doi.org/10.1007/s00253-008-1520-4
- Mora I., Cabrefiga J., Montesinos E. // Int. Microbiol. 2011. V. 14. P. 213–223. https://doi.org/10.2436/20.1501.01.151
- Rückert C., Blom J., Chen X., Reva O., Borriss R. // J. Biotechnol. 2011. V. 155. P. 78–85. https://doi.org/10.1016/j.jbiotec.2011.01.006
- Chen X.H., Koumoutsi A., Scholz R., Eisenreich A., Schneider K., Heinemeyer Morgenstern B. et al. // Nat. Biotechnol. 2007. V. 25. P. 1007–1014. https://doi.org/10.1038/nbt1325
- Hao K., He P., Blom J., Rueckert C., Mao Z., Wu Y. et al. // J. Bacteriol. 2012. V. 194. P. 3264–3265. https://doi.org/10.1128/JB.00545-12
- Blom J., Rueckert C., Niu B., Wang Q., Borriss R. // J. Bacteriol. 2012. V. 194. P. 1845–1846. https://doi.org/10.1128/JB.06762-11
- Zhao X., de Jong A., Zhou Z., Kuipers O.P. // Genome Announc. 2015. V. 3. № 2. Art. e00098-15. 10.1128/genomeA.00098-15' target='_blank'>http://doi: 10.1128/genomeA.00098-15.
- Pinto C., Sousa S., Froufe H., Egas C., Clement C., Fontaine F. et al. // Stand. Genomic Sci. 2018. V. 13. Art. 30. https://doi.org/10.1186/s40793-018-0327-x
- Zhao X., Zhou Z.J., Han Y., Wang Z.Z., Fan J., Xiao H.Z. // Microbiol. Res. 2013. V. 168. № 9. P. 598–606.
- Abriouel H., Franz C.M., Ben Omar N., Gálvez A. // FEMS Microbiol. Rev. 2011. V. 35. № 1. P. 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
- Hoch A.J., Losick R., Sonenshein A.L. // Am. Soc. Microbiol. 1993. P. 3–16.
- Slepecky R., Hemphill E. // The Prokaryotes. 2006. V. 4. P. 530–562.
- Riley M.A., Wertz J.E. // Ann. Rev. Microbiol. 2002. V. 56. P. 117–137.
- Wang T., Liang Y., Wu M., Chen Z., Lin J., Yang L. // Chin. J. Chem. Eng.. 2015. V. 23. № 4. P. 744–754. https://doi.org/10.1016/j.cjche.2014.05.020
- Vijayalakshmi K., Premalatha A., Suseela R. // Int. J. Pharm. Pharm. Sci. 2011. V. 3. P. 243–249.
- Jung S., Woo C., Fugaban J.I.I., Vazquez Bucheli J.E., Holzapfel W.H., Todorov S.D. // Probiotics Antimicrob. Proteins. 2021. V. 13. P. 1195–1212. https://doi.org/10.1007/s12602-021-09772-w
- Gao L., She M., Shi J., Cai D., Wang D., Xiong M. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 974460.
- Fahim S. // Int. J. Chem. Tech. Research. 2017. V. 10. № 6. P. 1096–1103.
- Патент Россия. 2012. № 2455352 С1.
- Jenssen H., Hamill P., Hancock R.E. // Clinic. Microbiology Reviews. 2006. V. 19. № 3. P. 491–511. https://doi.org/10.1128/CMR.00056-05
- Sang Y., Blecha F. // Anim. Health Res. Rev. 2008. V. 9. № 2. Р. 227–235. https://doi.org/10.1017/S1466252308001497
- Donadio S., Maffioli S., Monciardini P., Sosio M., Jabes D. // J. Antibiotics. 2010. V. 63. № 8. P. 423–430. https://doi.org/10.1038/ja.2010.62
- Brogden N.K., Brogden K.A. // Int. J. Antimicrob. Agents. 2011. V. 38. № 3. P. 217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004
- Jeyakumar J.M.J., Zhang M. // Himalayan J. of Agriculture. 2022. V. 3. Iss 1. P. 6–14. https://doi.org/10.47310/Hja.2022.v03i01.002
- Bro¨tz H., Bierbaum G., Leopold K., Reynolds P.E., Sahl H.G. // Antimicrob. Agents Chemother. 1998. V. 42. № 1. P. 154–160.
- Arguelles Arias A., Ongena M., Devreese B., Terrak M., Joris B., Fickers P. // PloS One. 2013. V 8. Iss 12. Art. e83037.
- Arguelles Arias A., Joris B., Fickers P. // Protein and Peptide Letters. 2014. V. 21. № 4. P. 336–340.
- Halimi B., Dortu C., Arguelles-Arias A., Thonart P., Joris B., Fickers P. // Probiotics Antimicrob. Prot. 2010. V. 2. P. 120–125.
- Makkar R.S., Cameotra S.S. // Appl. Microbiol. Biotechnol. 2002. V. 58. № 4. P. 428–434. https://doi.org/10.1007/s00253-001-0924-1
- Кисиль О.В., Трефилов В.С., Садыкова В.С., Зверева М.Э., Кубарева Е.А. // Прикл. биохимия и микробиология. 2023. Т. 59. № 1. С. 3–16. https://doi.org/10.31857/S0555109923010026
- Moldes A.B., Rodríguez-López L., Rincón-Fontán M., López-Prieto A., Vecino X., Cruz J.M. // Int. J. Mol. Sci. 2021. V. 22. № 5. Art. 2371. https://doi.org/10.3390/ijms22052371
- Wang S., Wang R., Zhao X., Ma G., Liu N., Zheng Y. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 961535 https://doi.org/10.3389/fbioe.2022.96153592
- Zhang F., Huo K., Song X., Quan Y., Wang S., Zhang Z. et al. // Microb. Cell Fact. 2020. V. 19. P. 223. https://doi.org/10.1186/s12934-020-01485-z
- Wang Yu., Zhaoxin Lu., Xiaomei Bie., Fengxia L.V. // Eur. Food Res. Technol. 2010. V. 231. P. 189–196. https://doi.org/10.1007/s00217-010-1271-1
- Chen M.C., Wang J.P., Zhu Y.J., Liu B., Yang W.J., Ruan C.Q. // J. Appl Microbiol. 2019. V. 126. № 5. Р. 1519–1529. https://doi.org/10.1111/jam.14213
- Huang L.R., Ling X.N., Peng S.Y., Tan M.H., Yan L.Q., Liang Y.Y. et al. // World J. Microbiol. 2023. V. 39. № 8. Art. 196. https://doi.org/10.1007/s11274-023-03643-y
- Pertot I., Puopolo G., Hosni T., Pedrotti L., Jourdan E., Ongena M. // FEMS Microbiol. Ecol. 2013.V. 86. № 3. P. 505–512.
- Dang Y., Zhao F., Liu X., Fan X., Huang R., Gao W. et al. // Microb. Cell Fact. 2019. V. 18. № 1. Art. 68. https://doi.org/10.1186/s12934-019-1121-1
- Soussi S., Essid R., Hardouin J., Gharbi D., Elkahou S., Tabbene O. et al. // Appl. Biochem. Biotechnol. 2019. V. 187. P. 1460–1474.
- Alikhajeh J., Khajeh K., Ranjbar B., Naderi-Manesh H., Lin Y.H., Liu E. et al.. // Acta Crystallogr. F. Struct. Biol. Cryst. Commun. 2010. V. 66. № 2. P. 121–129.
- Xin Q., Chen Y., Chen Q., Wang B., Pan L. // Microb. Cell Fact. 2022. V. 21. Art. 99.
- Jiang C., Ye C., Liu Y., Huang K., Jiang X., Zou D. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art 977215. https://doi.org/10.3389/fbioe.2022.977215
- Zhao X., Zheng H., Zhen J., Shu W., Yang S., Xu J. et al. // Int. J. Biol. Macromol. 2020. V. 165. P. 609–618.
- Du L., Wang J., Chen W., Chen J., Zheng Q., Fang X. et al. // Appl. Biochem. Biotechnol. 2023. V. 195. P. 451–466.
- Palva I. // GENE. 1982. V. 19. № 1. P. 81-87.
- Doan C.T., Chen C.L., Nguyen V.B., Tran T.N., Nguyen A.D., Wang S.L. // Polymers. 2021. V. 13. Art. 1483.
- Wells J.A., Ferrari E., Henner D.J., Estell D.A., Chen E.Y. // Nucleic Acids Res. 1983. V. 11. № 22. P. 7911–7925.
- Bott R., Ultsch M., Kossiakoff A., Graycar T., Katz B., Power S. // J. Biol. Chem. 1988. V. 263. № 16. P. 7895–7906.
- Devaraj K., Aathika S., Periyasamy K., Manickam Periyaraman P., Palaniyandi S., Subramanian S. // Nat. Prod. Res. 2019. V. 33. № 11. P. 1674–1677.
- Chen X.T., Ji J.B., Liu Y.C., Ye B., Zhou C.Y., Yan X. // Biotechnol. Lett. 2016. V. 38. P. 2109–2117.
- Duarte L.S., Barse L.Q., Dalberto P.F., da Silva W.T.S., Rodrigues R.C., Machado P. et al. // Enzyme Microb. Technol. 2020. V. 134. Art. 109468. http://dx.doi.org/10.1016/j.enzmictec.2019.109468 PMID: 32044021
- Gao W., He Y., Zhang F., Zhao F., Huang C., Zhang Y. et al. // Microb. Biotechnol. 2019. V. 12. P. 932–945.
- Gould A.R., May B.K., Elliott W.H. // J. Bacteriol. 1975. V. 122. P. 34–40.
- Xue M., Wu Y., Hong Y., Meng Y., Xu C., Jiang N. et al. // Front. Cell Infect. Microbiol. 2022. V. 12. Art. 1047351.
- Yang W. // J. Microbiol. 2019. V. 50. P. 749–757.
- Vehmaanpera J., Steinborn G., Hofemeister J. // J. Biotechnol. 1991. V. 19. P. 221–240.
- Zhao X., Xu J., Tan M., Yu Z., Yang S., Zheng H. et al. // J. Ind. Microbiol. Biotechnol. 2018. V. 45. P. 417–428.
- Schneider K., Chen X-H, Vater J., Franke P., Nicholson G., Rainer B. et al. // J. Nat. Prod. 2007. V. 70. № 9. P. 1417–1423. https://doi.org/10.1021/np070070k. Epub 2007 Sep 11
- Chen X.H., Koumoutsi A., Scholz R., Schneider K., Vater J., Süssmuth R. et al. // J. Biotechnol. 2009. V. 140. P. 27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011
- Zhang J., Zhu B., Li X., Xu X., Li D., Zeng F. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 866066. https://doi.org/10.3389/fbioe.2022.866066
- Herzner A.M., Dischinger J., Szekat C., Josten M., Schmitz S., Yakéléba A. et al. // PLoS ONE. 2011. V. 6. № 7. Art. e22389. https://doi.org/10.1371/journal.pone.0022389
- Hussein W., Awad H., Fahim S. // Am. J. Microbiol. Res. 2016. V. 4. № 5. P. 153–158.
- Yi Y., Li Z., Song C., Kuipers O.P. // Environ. Microbiol. 2018. V. 20. № 12. P. 4245–4260.
- Zhang Z., He P., Cai D., Chen S. // World J. Microbiol. Biotechnol. 2022. V. 38. Art. 208. https://doi.org/10.1007/s11274-022-03390-6
- Fang J., Liu Y., Huan C., Xu L., Ji G., Yan Z. // J. Clean. Prod. 2020. V. 255. Art. 120248. https://doi.org/10.1016/j.jclepro.2020.120248
- Fira D., Dimkić I., Berić T., Lozo J., Stanković S. // J. Biotechnology. 2018. V. 285. № 1. P. 44–55.
- Fiedler S., Heerklotz H. // Biophys. Journal. 2015. V. 109. P. 2079–2089.
- Etchegaray A., de Castro Bueno C., de Melo I.S., Tsai S.M., Fiore M.F., Silva–Stenico M.E. et al. // Archiv Microbiol. 2008. V. 190. № 6. P. 611–622.
- Falardeau J., Wise C., Novitsky L., Avis T.J. // J. Chem. Ecol. 2013. V. 39. № 7. P. 869–878.
- Choudhary D.K., Johri B.N. // Microbiol. Res. 2009. V. 164. P. 493–513.
- Патент Россия. 2019. № 2701 500 C1.
- Wang R., Long Z., Liang X., Guo S., Ning N., Yang L. et al.. // Biol. Control. 2021. V. 164. Art. 104765.
- Кузин А.И., Кузнецова Н.И., Николаенко М.А., Азизбекян P.P. // Биотехнология. 2013. V. 5. P. 31‒39.
- Гагкаева Т.Ю., Гаврилова О.П., Кузин А.И., Кузнецова Н.И., Николаенко М.А., Азизбекян P.P. // Биотехнология. 2014. V. 1. P. 32‒37.
- Hanif A., Zhang F., Li P., Li C., Xu Y., Zubair M. et al. // Toxins (Basel). 2019. V. 11. № 5. Art. 295. https://doi.org/10.3390/toxins11050295
- Gong A.P., Li H.P., Yuan O.S., Song X.S., Yao W., He W.-J. et al. // PlOS One. 2015. V. 10. № 2. Art. e 0116871. https://doi.org/10.1371/journal.pone.0116871
- Vitullo D., Di Pietro A., Romano A., Lanzotti V., Lima G. // Plant Pathol. 2012. V. 61. № 5. P. 689–699.
- Xu W.F., Ren H.S., Ou T., Lei T., Wei J.H., Huang C.S. et al. // Microb. Ecol. 2018. V. 3. № 1. P. 1–13.
- Kang B.R., Park J.S., Jung, W.J. // Microbial Pathogenesis. 2020. V. 149. Art. 104509.
- Hu J., Zheng M., Dang S., Shi M., Zhang J., Li Y. // Phytopathology. 2021. V. 111. № 8. P. 1338–1348.
- Ji S.H., Paul N.C., Deng J.X. Kim Y.S., Yun B.-S., Yu S.H. // Microbiology. 2013. V. 41. № 4. P. 234–242.
- Arreleda E., Jacobs R., Korsten L. // J. Appl. Microbiol. 2010. V. 108. № 2. P. 386–395.
- Arrebola E., Jacobs R., Korsten L. // J. Appl. Microbiol. 2010. V. 108. № 2. P. 386‒395. https://doi org/10.1111/j.1365-2672.2009.04438
- Yu G.Y. // Soil Biol. Biochem. 2002. V. 34. № 7. P. 955–963.
- Кузнецова Н.И. // Биотехнология. 2023. Т. 39. № 3. С. 3–11. https://doi.org/10.56304/S0234275823030031
- Alvarez F., Castro M., Principe A., Borioli G., Fischer S., Mori G. et al. // J. Appl. Microbiol. 2012. V. 112. № 1. P. 159‒174. https://doi.org/10.1111/j.1365-2672.2011.05182
- Li X., Zhang Y., Wei Z., Guan Z., Cai Y., Liao X. // PLoS One. 2016. V. 11. № 9. Art. e0162125. https://doi.org/10.1371/journal.pone.0162125
- Torres-Quintero M. C., Peña-Chora G., Hernández-Velázquez V. M., Arenas-Sosa I. // Fla. Entomol. 2015. V. 98. № 2. P. 799–802. https://doi.org/10.1653/024.098.0264
- Lu H., Qian S., Muhammad U., Jiang X., Han J., Lu Z. // J. Appl. Microbiol. 2016. V. 121. № 6. P. 1653–1664.
- Yoshida S., Hiradate S., Tsukamoto T., Hatakeda K., Shirata A. // Phytopathology. 2001. V. 91. № 2. P. 181–187.
- Liu J., Hu X., He H., Zhang X., Guo J., Bai J. et al. // Front. Microbiol. 2022. V. 13. Art. 1025771. https://doi.org/10.3389/fmicb.2022.1025771
- Gao W., Liu F., Zhang W., Quan Y., Dang Y., Feng J. et al. // Microbiology Open. 2017. V. 6. Art. e00398. https://doi.org/10.1002/mbo3.398
- Gong Q., Zhang C., Lu F., Zhao H., Bie X., Lu Z. // Food Control. 2014. V. 36. № 1. P. 8–14.
- Sun J., Li W., Liu Y., Lin F., Huang Z., Lu F. et al. // J. Stored Products Research. 2018. V. 75. № 1. P. 21–28.
- Farzaneh M., Shi Z.-Q., Ghassempour A., Sedaghat N., Ahmadzadeh M., Mirabolfathy M. et al. // Food Control. 2012. V. 23. № 1. P. 100–106.
- Wu L., Wu H., Chen L., Yu X., Borriss R., Gao X. // Sci Rep. 2015. V. 5. Art. 12975. https://doi.org/10.1038/srep12975
- Vasaıt R., Bhamare S., Jamdhade S., Savkar Y. // Int. J. Secondary Metabolite. 2023. V. 10. № 2. P. 175–189. https://doi.org/10.21448/ijsm.1258717
- Lisboa M.P., Bonatto D., Bizani D., Henriques J.A.P., Brandelli A. // Int. J. Microbiol. 2006. V. 9. P. 111–118.
- Jetiyanon K., Fowler W.D., Kloepper J.W. // Plant Dis. 2003. V. 87. № 11. P. 1390–1394.
- Wang S., Wu H., Qiao, J., Ma L., Liu J., Xia Y. // J. Microbiol. Biotechnol. 2009. V. 19. № 10. P. 1250–1258.
- Beris D., Theologidis I., Skandalis N., Vassilakos N. // Sci. Rep. 2018. V. 8. № 1. Art. 10320. https://doi.org/10.1038/s41598-018-28677-3
- Desoignies N., Schramme F., Ongena M., Legreve A. // Mol. Plant Pathol. 2013. V. 14. № 4. P. 416–421.
- Максимов И.В., Сингх Б.П., Черепанова Е.А., Бурханова Г.Ф., Хайруллин Р.М. // Прикл. биохимия и микробиология. 2020. Т. 56. № 1. С. 19–34. https://doi.org/10.31857/S0555109920010134
- Lu H., Yang P., Zhong M., Bilal M., Xu H., Zhang Q. et al. // Food Science & Nutrition. 2023. V. 11. P. 2186–2196. https://doi.org/10.1002/fsn3.3094
- WoldemariamYohannes K., Wan Z., Yu Q., Li H., Wei X., Liu Y. et al. // J. Agric. Food Chem. 2020. V. 68. № 50. P. 14709–14727. https://doi.org/10.1021/acs.jafc.0c06396
- Lin L.Z., Zheng Q.W., Wei T., Zhang Z.Q., Zhao C.F., Zhong H. et al. // Front. Microbiol. 2020. V. 11. Art. 579621. https://doi.org/10.3389/fmicb.2020.579621
- Lee A., Cheng K.C., Liu J.R. // PloS One. 2017. V. 12. № 8. Art. e0182220. https://doi.org/10.1371/journal.pone.0182220
- Ahmed S.T., Islam M., Mun H.S., Sim H.J., Kim Y.J., Yang C.J. // Poultry Science. 2014. V. 93. № 8. P. 1963–1971.
- Lei X.J., Ru Y.J., Zhang H.F. // JAPR. 2014. V. 23. № 3. P. 486–493.
- Патент Россия. 2017. № 2614 858.
- Zhou P., Chen, W., Zhu Z., Zhou K., Luo S., Hu S. et al. // Front. Cell Infect. Microbiol. 2022. V. 12. Art. 815436. https://doi.org/10.3389/fcimb.2022.815436
Supplementary files
