Prospects for application of Bacillus amyloliquefaciens in biocontrol, metabolic engineering and protein expression (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the characteristics, composition of metabolites and biotechnological properties of Bacillus amyloliquefaciens including structure, biochemical, ecological, genetic properties, application in plant growing, food industry, medicine, as an alternative to conventional antibiotics. Furthermore, the review addresses environmental applications of B. amyloliquefaciens such as bioprotection in vegetable storage, as plant growth promoters and protectors, and as bioremediation agents. The review aims to understand the characteristics, genetic tools, and metabolic capabilities of B. amyloliquefaciens, highlighting its potential as a base cell for synthetic biology, metabolic engineering, and protein expression. We discuss the role of the bacteria in the production of chemicals, enzymes, and other industrial bioproducts, as well as their applications in medicine, such as combating pathogenic bacteria and promoting gut health. In agriculture, B. amyloliquefaciens has shown potential as a biofertilizer, biocontrol agent with antifungal, antibacterial, insecticidal, antiviral properties, and stress tolerance enhancer for various crops. Despite its many potential applications, B. amyloliquefaciens remains underexplored. The review highlights the need for further research and development of advanced engineering methods and gene editing technologies designed specifically for B. amyloliquefaciens, which will ultimately allow its full potential to be realized in scientific and industrial contexts.

Full Text

Restricted Access

About the authors

Yu. V. Bataeva

Russian State Agrarian University — Moscow Timiryazev Agricultural Academy (RSAU — MTAA)

Author for correspondence.
Email: aveatab@mail.ru

Department of Biotechnology

Russian Federation, Moscow, 127434

V. D. Pokhilenko

Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor

Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279

I. A. Dunaicev

Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor

Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279

A. R. Tekutov

Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor

Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279

T. A. Kalmantaev

Federal Budgetary Institution of Science “State Scientific Center for Applied Microbiology and Biotechnology” of Rospotrebnadzor

Email: aveatab@mail.ru
Russian Federation, Obolensk, Moscow Region, 142279

References

  1. Cotter P.D., Ross R.P., Hill C. // Nat. Rev. Microbiol. 2013. V. 11. P. 95–105.
  2. Gabrielsen C., Brede D.A., Nes I.F., Diep D.B. // Appl. Environ. Microbiol. 2014. V. 80. № 22.Р. 6854–6862. https://doi.org/10.1128/AEM.02284-14
  3. Field D., Cotter P.D., Hill C., Ross R.P. // Front. Microbiol. 2015. V. 6. P. 1363. https://doi.org/10.3389/fmicb.2015.01363
  4. Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. // Front. Microbiol. 2019. V. 10. P. 302. https://doi.org/10.3389/fmicb.2019.00302
  5. Wang Y., Zhu X., Bie X., Lu F., Zhang C., Yao S. et al. // LWT–Food Science and Technology. 2014. V. 56. № 2. P. 502–507. https://doi.org/10.1016/j.lwt.2013.11.041
  6. Cladera-Olivera F., Caron G.R., Brandelli A. // Lett. Appl.Microbiol. 2004. V. 38. № 4. Р. 251–256. https://doi.org/10.1111/j.1472-765X.2004.01478.x
  7. Лаптев Г.Ю., Йылдырым Е.А., Дуняшев Т.П., Ильина Л.А., Тюрина Д.Г., Филиппова В.А. и др. // Сельскохоз. биология. 2020. Т. 55. № 4. С. 816–829. https://doi.org/10.15389/agrobiology.2020.4.816rus
  8. Черепанова Е.А., Галяутдинов И.В., Бурханова Г.Ф., Максимов И.В. // Прикл. биохимия и микробиология. 2021. Т. 57. № 5. С. 496–503. https://doi.org/10.31857/S0555109921050032
  9. Cherif A., Chehimi S., Limem F., Hansen B.M., Hendriksen N.B., Daffonchio D. et al. // J. Appl. Microbiol. 2003. V. 95. № 5. Р. 990–1000. https://doi.org/10.1046/j.1365-2672.2003.02089.x
  10. Stein T. // Mol. Microbiol. 2005. V. 56. № 4. P. 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  11. Pattnaik P., Glover S., Batish V.K. // Microbiol. Res. 2005. V. 160. P. 213–218.
  12. Aunpad R., Na-Bangchang K. // Curr. Microbiol. 2007. T. 55. № 4. Р. 308–313. https://doi.org/10.1007/s00284-006-0632-2
  13. Hammami R., Fernandez B., Lacroix C., Fliss I. // Cell. Mol. Life Sci. 2013. V. 70. № 16. Р. 2947–2967. https://doi.org/10.1007/s00018-012-1202-3
  14. Stoica R.M., Moscovici M., Tomulescu C., Cășărică A., Băbeanu N., Popa O. et al. // Romanian Biotech. Letters. 2019. V. 24. № 6. P. 1111–1119. https://doi.org/10.25083/rbl/24.6/1111.1119
  15. Sumi C.D., Yang B.W., Yeo In-Cheol, Hahm Y.T. // Canadian J. Microbiol. 2015. V. 61. № 2. P. 93–103. https://doi.org/10.1139/cjm-2014-0613
  16. Похиленко В.Д., Герасимов В.Н., Жиглецова С.К., Калмантаев Т.А., Чукина И.А., Миронова Р.И. и др. // Микробиология. 2023. Т. 92. № 6. С. 631–636. https://doi.org/10.31857/S0026365623600098
  17. Raheem N., Straus S.K. // Front. Microbiol. 2019. V. 10, Art. 2866. https://doi.org/10.3389/fmicb.2019.02866
  18. Moravej H., Moravej Z., Yazdanparast M., Heiat M., Mirhosseini A., Moosazadeh Moghaddam M. et al. // Microbial Drug Resistance. 2018. V. 24. № 6. Р. 747–767. https://doi.org/10.1089/mdr.2017.0392
  19. Rotem S., Mor A. // Biochim. Biophys. Acta. 2009. V. 1788. № 8. С. 1582-1592. https://doi.org/10.1016/j.bbamem.2008.10.020
  20. Jack R.W., Tagg J.R., Ray B. // Microbiol Rev. 1995. V. 59. № 2. Р. 171–200. https://doi.org/10.1128/mr.59.2.171-200.1995
  21. Zakataeva N.P., Nikitina O.V., Gronskiy S.V., Romanenkov D.V., Livshits V.A. // Appl. Microbiol. Biotechnol. 2010. V. 85. P. 1201–1209.
  22. Yang L., Wang H., Lv Y., Bai Y., Luo H., Shi P. et al. // J. Agric. Food Chem. 2016. V. 64. P. 78–84.
  23. Feng J., Gu Y., Quan Y., Cao M., Gao W., Zhang W. et al. // Metab. Eng. 2015. V. 32. P. 106–115.
  24. Prajapati V.S., Ray S., Narayan J., Joshi C.C., Patel K.C., Trivedi U.B. et al. // Biotech. 2017. V. 7. P. 372. https://doi.org/10.1007/s13205-017-1005-1
  25. Prajapati V.S., Trivedi U.B., Patel K.C. // Biotech. 2015. V. 5. P. 211–220. https://doi.org/10.1007/s13205-014-0213-1
  26. Geraldi A., Famunghui M., Abigail M., Siona Saragih C.F., Febitania D., Elmarthenez H. et al. // BIO Integration. 2022. V. 3. № 3. Р. 132–137. https://doi.org/10.15212/bioi-2022-0005
  27. Kaspar F., Neubauer P., Gimpel M. // J. Natural Products. 2019. V. 82. № 7. P. 2038–2053. https://doi.org/10.1021/acs.jnatprod.9b00110, PubMed: 31287310
  28. Bataeva Yu., Magzanova D., Baimukhambetova A., Grigorian L., Vilkova D. // International Scientific Forum Caspian 2021: Ways of Sustainable Development. 2022. V. 2. P. 006. EDN QVCLVB https://doi.org/10.56199/dpcsebm.momz3523
  29. Palma L., Munoz D., Berry C., Murillo J., de Escudero I.R., Caballero P. // Toxins. 2014. V. 6. P. 3144–3156. https://doi.org/10.3390/toxins6113144
  30. Rashid M.H., Khan A., Hossain M.T., Chung Y.R. // Front. Plant Sci. 2017. V. 8. P. 211. https://doi.org/10.3389/fpls.2017.00211
  31. Abdalla O.A., Bibi S., Zhang S. // Plant Protection. 2017. V. 50. № 11–12. P. 584–597.
  32. Zalila-Kolsi I., Ben-Mahmoud A., Al-Barazie R. // Microorganisms. 2023. V. 11. Art. 2215. https://doi.org/10.3390/microorganisms11092215
  33. Bizani D., Dominguez A.P.M., Brandelli A. // Lett. Appl. Microbiol. 2005. V. 41. № 3. Р. 269–273. https://doi.org/10.1111/j.1472-765X.2005.01748.x
  34. Xie J., Zhang R., Shang C., Guo Y. // African J. Biotechnol. 2009. V. 8. P. 5611–5619.
  35. Lin C., Tsai C.H., Chen P.Y., Wu C.Y., Chang Y.L., Yang Y.L. et al. // PLOS ONE. 2018. V. 13. № 4. Art. e0196520. https://doi.org/10.1371/journal.pone.0196520
  36. Xie Y.D., Peng Q.J., Ji Y.Y., Xie A.L., Yang L., Mu S.Z. et al. // Front. Microbiol. 2021. V. 12. Art. 645484. https://doi.org/10.3389/fmicb.2021.645484А
  37. Cai D., Rao Y., Zhan Y., Wang Q., Chen S. // Microbiology. 2019. V. 126. P. 1632–1642. https://doi.org/10.1111/jam.14192
  38. Oren A., Garrity G.M. // Int. J. Syst. Evol. Microbiol. 2021. V. 71. Art. 005056. https://doi.org/10.1099/ijsem.0.005056
  39. Gibbons N.E., Murray R.G.E. // Int. J. Syst Bacteriol. 1978. V. 28. P. 1–6.
  40. Fukumoto J. // Nogeikagaku Kaishi. 1943. V. 19. P. 487–503.
  41. Priest F.G., Goodfellow M., Shute L.A., Berkeley R.C.W. // Int. J. Syst. Bacteriol. 1987.V. 37. № 1. P. 69–71.
  42. Ngalimat M.S., Yahaya R.S.R., Baharudin M.M.A.-a., Yaminudin S.M., Karim M., Ahmad S.A. et al. // Microorganisms. 2021. V. 9. Art. 614. https://doi.org/10.3390/ microorganisms9030614
  43. Su Y.T., Liu C., Long Z., Ren H., Guo X.H. // Probiotics Antimicrob. Proteins. 2019. V. 11. P. 921–930.
  44. Zalila-Kolsi I., Kessentini S., Tounsi S., Jamoussi K. // Microorganisms. 2022. V. 10. Art. 830. https://doi.org/10.3390/microorganisms10040830
  45. Ye M., Sun L., Yang R., Wang Z., Qi K. // R. Soc. Open Sci. 2017. V. 4. Art. 171012. https://doi.org/10.1098/rsos.171012
  46. Gamez R.M., Rodríguez F., Bernal J.F., Agarwala R., Landsman D., Mariño-Ramírez L. // Genome Announc. 2015. V. 3. № 6. Art. 01391-15. https://doi.org/10.1128/genomeA.01391-15
  47. Sevugapperumal N., Prajapati V.S., Murugavel V., Perumal R. // Front. Genet. 2021. V. 12. Art. 704165. https://doi.org/10.3389/fgene.2021.704165
  48. Chung S., Kong H., Buyer J.S., Lakshman D.K., Lydon J., Kim S.D. et al. // Appl. Microbiol. Biotechnol. 2008. V. 80. P. 115–123. https://doi.org/10.1007/s00253-008-1520-4
  49. Mora I., Cabrefiga J., Montesinos E. // Int. Microbiol. 2011. V. 14. P. 213–223. https://doi.org/10.2436/20.1501.01.151
  50. Rückert C., Blom J., Chen X., Reva O., Borriss R. // J. Biotechnol. 2011. V. 155. P. 78–85. https://doi.org/10.1016/j.jbiotec.2011.01.006
  51. Chen X.H., Koumoutsi A., Scholz R., Eisenreich A., Schneider K., Heinemeyer Morgenstern B. et al. // Nat. Biotechnol. 2007. V. 25. P. 1007–1014. https://doi.org/10.1038/nbt1325
  52. Hao K., He P., Blom J., Rueckert C., Mao Z., Wu Y. et al. // J. Bacteriol. 2012. V. 194. P. 3264–3265. https://doi.org/10.1128/JB.00545-12
  53. Blom J., Rueckert C., Niu B., Wang Q., Borriss R. // J. Bacteriol. 2012. V. 194. P. 1845–1846. https://doi.org/10.1128/JB.06762-11
  54. Zhao X., de Jong A., Zhou Z., Kuipers O.P. // Genome Announc. 2015. V. 3. № 2. Art. e00098-15. 10.1128/genomeA.00098-15' target='_blank'>http://doi: 10.1128/genomeA.00098-15.
  55. Pinto C., Sousa S., Froufe H., Egas C., Clement C., Fontaine F. et al. // Stand. Genomic Sci. 2018. V. 13. Art. 30. https://doi.org/10.1186/s40793-018-0327-x
  56. Zhao X., Zhou Z.J., Han Y., Wang Z.Z., Fan J., Xiao H.Z. // Microbiol. Res. 2013. V. 168. № 9. P. 598–606.
  57. Abriouel H., Franz C.M., Ben Omar N., Gálvez A. // FEMS Microbiol. Rev. 2011. V. 35. № 1. P. 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
  58. Hoch A.J., Losick R., Sonenshein A.L. // Am. Soc. Microbiol. 1993. P. 3–16.
  59. Slepecky R., Hemphill E. // The Prokaryotes. 2006. V. 4. P. 530–562.
  60. Riley M.A., Wertz J.E. // Ann. Rev. Microbiol. 2002. V. 56. P. 117–137.
  61. Wang T., Liang Y., Wu M., Chen Z., Lin J., Yang L. // Chin. J. Chem. Eng.. 2015. V. 23. № 4. P. 744–754. https://doi.org/10.1016/j.cjche.2014.05.020
  62. Vijayalakshmi K., Premalatha A., Suseela R. // Int. J. Pharm. Pharm. Sci. 2011. V. 3. P. 243–249.
  63. Jung S., Woo C., Fugaban J.I.I., Vazquez Bucheli J.E., Holzapfel W.H., Todorov S.D. // Probiotics Antimicrob. Proteins. 2021. V. 13. P. 1195–1212. https://doi.org/10.1007/s12602-021-09772-w
  64. Gao L., She M., Shi J., Cai D., Wang D., Xiong M. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 974460.
  65. Fahim S. // Int. J. Chem. Tech. Research. 2017. V. 10. № 6. P. 1096–1103.
  66. Патент Россия. 2012. № 2455352 С1.
  67. Jenssen H., Hamill P., Hancock R.E. // Clinic. Microbiology Reviews. 2006. V. 19. № 3. P. 491–511. https://doi.org/10.1128/CMR.00056-05
  68. Sang Y., Blecha F. // Anim. Health Res. Rev. 2008. V. 9. № 2. Р. 227–235. https://doi.org/10.1017/S1466252308001497
  69. Donadio S., Maffioli S., Monciardini P., Sosio M., Jabes D. // J. Antibiotics. 2010. V. 63. № 8. P. 423–430. https://doi.org/10.1038/ja.2010.62
  70. Brogden N.K., Brogden K.A. // Int. J. Antimicrob. Agents. 2011. V. 38. № 3. P. 217–225. https://doi.org/10.1016/j.ijantimicag.2011.05.004
  71. Jeyakumar J.M.J., Zhang M. // Himalayan J. of Agriculture. 2022. V. 3. Iss 1. P. 6–14. https://doi.org/10.47310/Hja.2022.v03i01.002
  72. Bro¨tz H., Bierbaum G., Leopold K., Reynolds P.E., Sahl H.G. // Antimicrob. Agents Chemother. 1998. V. 42. № 1. P. 154–160.
  73. Arguelles Arias A., Ongena M., Devreese B., Terrak M., Joris B., Fickers P. // PloS One. 2013. V 8. Iss 12. Art. e83037.
  74. Arguelles Arias A., Joris B., Fickers P. // Protein and Peptide Letters. 2014. V. 21. № 4. P. 336–340.
  75. Halimi B., Dortu C., Arguelles-Arias A., Thonart P., Joris B., Fickers P. // Probiotics Antimicrob. Prot. 2010. V. 2. P. 120–125.
  76. Makkar R.S., Cameotra S.S. // Appl. Microbiol. Biotechnol. 2002. V. 58. № 4. P. 428–434. https://doi.org/10.1007/s00253-001-0924-1
  77. Кисиль О.В., Трефилов В.С., Садыкова В.С., Зверева М.Э., Кубарева Е.А. // Прикл. биохимия и микробиология. 2023. Т. 59. № 1. С. 3–16. https://doi.org/10.31857/S0555109923010026
  78. Moldes A.B., Rodríguez-López L., Rincón-Fontán M., López-Prieto A., Vecino X., Cruz J.M. // Int. J. Mol. Sci. 2021. V. 22. № 5. Art. 2371. https://doi.org/10.3390/ijms22052371
  79. Wang S., Wang R., Zhao X., Ma G., Liu N., Zheng Y. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 961535 https://doi.org/10.3389/fbioe.2022.96153592
  80. Zhang F., Huo K., Song X., Quan Y., Wang S., Zhang Z. et al. // Microb. Cell Fact. 2020. V. 19. P. 223. https://doi.org/10.1186/s12934-020-01485-z
  81. Wang Yu., Zhaoxin Lu., Xiaomei Bie., Fengxia L.V. // Eur. Food Res. Technol. 2010. V. 231. P. 189–196. https://doi.org/10.1007/s00217-010-1271-1
  82. Chen M.C., Wang J.P., Zhu Y.J., Liu B., Yang W.J., Ruan C.Q. // J. Appl Microbiol. 2019. V. 126. № 5. Р. 1519–1529. https://doi.org/10.1111/jam.14213
  83. Huang L.R., Ling X.N., Peng S.Y., Tan M.H., Yan L.Q., Liang Y.Y. et al. // World J. Microbiol. 2023. V. 39. № 8. Art. 196. https://doi.org/10.1007/s11274-023-03643-y
  84. Pertot I., Puopolo G., Hosni T., Pedrotti L., Jourdan E., Ongena M. // FEMS Microbiol. Ecol. 2013.V. 86. № 3. P. 505–512.
  85. Dang Y., Zhao F., Liu X., Fan X., Huang R., Gao W. et al. // Microb. Cell Fact. 2019. V. 18. № 1. Art. 68. https://doi.org/10.1186/s12934-019-1121-1
  86. Soussi S., Essid R., Hardouin J., Gharbi D., Elkahou S., Tabbene O. et al. // Appl. Biochem. Biotechnol. 2019. V. 187. P. 1460–1474.
  87. Alikhajeh J., Khajeh K., Ranjbar B., Naderi-Manesh H., Lin Y.H., Liu E. et al.. // Acta Crystallogr. F. Struct. Biol. Cryst. Commun. 2010. V. 66. № 2. P. 121–129.
  88. Xin Q., Chen Y., Chen Q., Wang B., Pan L. // Microb. Cell Fact. 2022. V. 21. Art. 99.
  89. Jiang C., Ye C., Liu Y., Huang K., Jiang X., Zou D. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art 977215. https://doi.org/10.3389/fbioe.2022.977215
  90. Zhao X., Zheng H., Zhen J., Shu W., Yang S., Xu J. et al. // Int. J. Biol. Macromol. 2020. V. 165. P. 609–618.
  91. Du L., Wang J., Chen W., Chen J., Zheng Q., Fang X. et al. // Appl. Biochem. Biotechnol. 2023. V. 195. P. 451–466.
  92. Palva I. // GENE. 1982. V. 19. № 1. P. 81-87.
  93. Doan C.T., Chen C.L., Nguyen V.B., Tran T.N., Nguyen A.D., Wang S.L. // Polymers. 2021. V. 13. Art. 1483.
  94. Wells J.A., Ferrari E., Henner D.J., Estell D.A., Chen E.Y. // Nucleic Acids Res. 1983. V. 11. № 22. P. 7911–7925.
  95. Bott R., Ultsch M., Kossiakoff A., Graycar T., Katz B., Power S. // J. Biol. Chem. 1988. V. 263. № 16. P. 7895–7906.
  96. Devaraj K., Aathika S., Periyasamy K., Manickam Periyaraman P., Palaniyandi S., Subramanian S. // Nat. Prod. Res. 2019. V. 33. № 11. P. 1674–1677.
  97. Chen X.T., Ji J.B., Liu Y.C., Ye B., Zhou C.Y., Yan X. // Biotechnol. Lett. 2016. V. 38. P. 2109–2117.
  98. Duarte L.S., Barse L.Q., Dalberto P.F., da Silva W.T.S., Rodrigues R.C., Machado P. et al. // Enzyme Microb. Technol. 2020. V. 134. Art. 109468. http://dx.doi.org/10.1016/j.enzmictec.2019.109468 PMID: 32044021
  99. Gao W., He Y., Zhang F., Zhao F., Huang C., Zhang Y. et al. // Microb. Biotechnol. 2019. V. 12. P. 932–945.
  100. Gould A.R., May B.K., Elliott W.H. // J. Bacteriol. 1975. V. 122. P. 34–40.
  101. Xue M., Wu Y., Hong Y., Meng Y., Xu C., Jiang N. et al. // Front. Cell Infect. Microbiol. 2022. V. 12. Art. 1047351.
  102. Yang W. // J. Microbiol. 2019. V. 50. P. 749–757.
  103. Vehmaanpera J., Steinborn G., Hofemeister J. // J. Biotechnol. 1991. V. 19. P. 221–240.
  104. Zhao X., Xu J., Tan M., Yu Z., Yang S., Zheng H. et al. // J. Ind. Microbiol. Biotechnol. 2018. V. 45. P. 417–428.
  105. Schneider K., Chen X-H, Vater J., Franke P., Nicholson G., Rainer B. et al. // J. Nat. Prod. 2007. V. 70. № 9. P. 1417–1423. https://doi.org/10.1021/np070070k. Epub 2007 Sep 11
  106. Chen X.H., Koumoutsi A., Scholz R., Schneider K., Vater J., Süssmuth R. et al. // J. Biotechnol. 2009. V. 140. P. 27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011
  107. Zhang J., Zhu B., Li X., Xu X., Li D., Zeng F. et al. // Front. Bioeng. Biotechnol. 2022. V. 10. Art. 866066. https://doi.org/10.3389/fbioe.2022.866066
  108. Herzner A.M., Dischinger J., Szekat C., Josten M., Schmitz S., Yakéléba A. et al. // PLoS ONE. 2011. V. 6. № 7. Art. e22389. https://doi.org/10.1371/journal.pone.0022389
  109. Hussein W., Awad H., Fahim S. // Am. J. Microbiol. Res. 2016. V. 4. № 5. P. 153–158.
  110. Yi Y., Li Z., Song C., Kuipers O.P. // Environ. Microbiol. 2018. V. 20. № 12. P. 4245–4260.
  111. Zhang Z., He P., Cai D., Chen S. // World J. Microbiol. Biotechnol. 2022. V. 38. Art. 208. https://doi.org/10.1007/s11274-022-03390-6
  112. Fang J., Liu Y., Huan C., Xu L., Ji G., Yan Z. // J. Clean. Prod. 2020. V. 255. Art. 120248. https://doi.org/10.1016/j.jclepro.2020.120248
  113. Fira D., Dimkić I., Berić T., Lozo J., Stanković S. // J. Biotechnology. 2018. V. 285. № 1. P. 44–55.
  114. Fiedler S., Heerklotz H. // Biophys. Journal. 2015. V. 109. P. 2079–2089.
  115. Etchegaray A., de Castro Bueno C., de Melo I.S., Tsai S.M., Fiore M.F., Silva–Stenico M.E. et al. // Archiv Microbiol. 2008. V. 190. № 6. P. 611–622.
  116. Falardeau J., Wise C., Novitsky L., Avis T.J. // J. Chem. Ecol. 2013. V. 39. № 7. P. 869–878.
  117. Choudhary D.K., Johri B.N. // Microbiol. Res. 2009. V. 164. P. 493–513.
  118. Патент Россия. 2019. № 2701 500 C1.
  119. Wang R., Long Z., Liang X., Guo S., Ning N., Yang L. et al.. // Biol. Control. 2021. V. 164. Art. 104765.
  120. Кузин А.И., Кузнецова Н.И., Николаенко М.А., Азизбекян P.P. // Биотехнология. 2013. V. 5. P. 31‒39.
  121. Гагкаева Т.Ю., Гаврилова О.П., Кузин А.И., Кузнецова Н.И., Николаенко М.А., Азизбекян P.P. // Биотехнология. 2014. V. 1. P. 32‒37.
  122. Hanif A., Zhang F., Li P., Li C., Xu Y., Zubair M. et al. // Toxins (Basel). 2019. V. 11. № 5. Art. 295. https://doi.org/10.3390/toxins11050295
  123. Gong A.P., Li H.P., Yuan O.S., Song X.S., Yao W., He W.-J. et al. // PlOS One. 2015. V. 10. № 2. Art. e 0116871. https://doi.org/10.1371/journal.pone.0116871
  124. Vitullo D., Di Pietro A., Romano A., Lanzotti V., Lima G. // Plant Pathol. 2012. V. 61. № 5. P. 689–699.
  125. Xu W.F., Ren H.S., Ou T., Lei T., Wei J.H., Huang C.S. et al. // Microb. Ecol. 2018. V. 3. № 1. P. 1–13.
  126. Kang B.R., Park J.S., Jung, W.J. // Microbial Pathogenesis. 2020. V. 149. Art. 104509.
  127. Hu J., Zheng M., Dang S., Shi M., Zhang J., Li Y. // Phytopathology. 2021. V. 111. № 8. P. 1338–1348.
  128. Ji S.H., Paul N.C., Deng J.X. Kim Y.S., Yun B.-S., Yu S.H. // Microbiology. 2013. V. 41. № 4. P. 234–242.
  129. Arreleda E., Jacobs R., Korsten L. // J. Appl. Microbiol. 2010. V. 108. № 2. P. 386–395.
  130. Arrebola E., Jacobs R., Korsten L. // J. Appl. Microbiol. 2010. V. 108. № 2. P. 386‒395. https://doi org/10.1111/j.1365-2672.2009.04438
  131. Yu G.Y. // Soil Biol. Biochem. 2002. V. 34. № 7. P. 955–963.
  132. Кузнецова Н.И. // Биотехнология. 2023. Т. 39. № 3. С. 3–11. https://doi.org/10.56304/S0234275823030031
  133. Alvarez F., Castro M., Principe A., Borioli G., Fischer S., Mori G. et al. // J. Appl. Microbiol. 2012. V. 112. № 1. P. 159‒174. https://doi.org/10.1111/j.1365-2672.2011.05182
  134. Li X., Zhang Y., Wei Z., Guan Z., Cai Y., Liao X. // PLoS One. 2016. V. 11. № 9. Art. e0162125. https://doi.org/10.1371/journal.pone.0162125
  135. Torres-Quintero M. C., Peña-Chora G., Hernández-Velázquez V. M., Arenas-Sosa I. // Fla. Entomol. 2015. V. 98. № 2. P. 799–802. https://doi.org/10.1653/024.098.0264
  136. Lu H., Qian S., Muhammad U., Jiang X., Han J., Lu Z. // J. Appl. Microbiol. 2016. V. 121. № 6. P. 1653–1664.
  137. Yoshida S., Hiradate S., Tsukamoto T., Hatakeda K., Shirata A. // Phytopathology. 2001. V. 91. № 2. P. 181–187.
  138. Liu J., Hu X., He H., Zhang X., Guo J., Bai J. et al. // Front. Microbiol. 2022. V. 13. Art. 1025771. https://doi.org/10.3389/fmicb.2022.1025771
  139. Gao W., Liu F., Zhang W., Quan Y., Dang Y., Feng J. et al. // Microbiology Open. 2017. V. 6. Art. e00398. https://doi.org/10.1002/mbo3.398
  140. Gong Q., Zhang C., Lu F., Zhao H., Bie X., Lu Z. // Food Control. 2014. V. 36. № 1. P. 8–14.
  141. Sun J., Li W., Liu Y., Lin F., Huang Z., Lu F. et al. // J. Stored Products Research. 2018. V. 75. № 1. P. 21–28.
  142. Farzaneh M., Shi Z.-Q., Ghassempour A., Sedaghat N., Ahmadzadeh M., Mirabolfathy M. et al. // Food Control. 2012. V. 23. № 1. P. 100–106.
  143. Wu L., Wu H., Chen L., Yu X., Borriss R., Gao X. // Sci Rep. 2015. V. 5. Art. 12975. https://doi.org/10.1038/srep12975
  144. Vasaıt R., Bhamare S., Jamdhade S., Savkar Y. // Int. J. Secondary Metabolite. 2023. V. 10. № 2. P. 175–189. https://doi.org/10.21448/ijsm.1258717
  145. Lisboa M.P., Bonatto D., Bizani D., Henriques J.A.P., Brandelli A. // Int. J. Microbiol. 2006. V. 9. P. 111–118.
  146. Jetiyanon K., Fowler W.D., Kloepper J.W. // Plant Dis. 2003. V. 87. № 11. P. 1390–1394.
  147. Wang S., Wu H., Qiao, J., Ma L., Liu J., Xia Y. // J. Microbiol. Biotechnol. 2009. V. 19. № 10. P. 1250–1258.
  148. Beris D., Theologidis I., Skandalis N., Vassilakos N. // Sci. Rep. 2018. V. 8. № 1. Art. 10320. https://doi.org/10.1038/s41598-018-28677-3
  149. Desoignies N., Schramme F., Ongena M., Legreve A. // Mol. Plant Pathol. 2013. V. 14. № 4. P. 416–421.
  150. Максимов И.В., Сингх Б.П., Черепанова Е.А., Бурханова Г.Ф., Хайруллин Р.М. // Прикл. биохимия и микробиология. 2020. Т. 56. № 1. С. 19–34. https://doi.org/10.31857/S0555109920010134
  151. Lu H., Yang P., Zhong M., Bilal M., Xu H., Zhang Q. et al. // Food Science & Nutrition. 2023. V. 11. P. 2186–2196. https://doi.org/10.1002/fsn3.3094
  152. WoldemariamYohannes K., Wan Z., Yu Q., Li H., Wei X., Liu Y. et al. // J. Agric. Food Chem. 2020. V. 68. № 50. P. 14709–14727. https://doi.org/10.1021/acs.jafc.0c06396
  153. Lin L.Z., Zheng Q.W., Wei T., Zhang Z.Q., Zhao C.F., Zhong H. et al. // Front. Microbiol. 2020. V. 11. Art. 579621. https://doi.org/10.3389/fmicb.2020.579621
  154. Lee A., Cheng K.C., Liu J.R. // PloS One. 2017. V. 12. № 8. Art. e0182220. https://doi.org/10.1371/journal.pone.0182220
  155. Ahmed S.T., Islam M., Mun H.S., Sim H.J., Kim Y.J., Yang C.J. // Poultry Science. 2014. V. 93. № 8. P. 1963–1971.
  156. Lei X.J., Ru Y.J., Zhang H.F. // JAPR. 2014. V. 23. № 3. P. 486–493.
  157. Патент Россия. 2017. № 2614 858.
  158. Zhou P., Chen, W., Zhu Z., Zhou K., Luo S., Hu S. et al. // Front. Cell Infect. Microbiol. 2022. V. 12. Art. 815436. https://doi.org/10.3389/fcimb.2022.815436

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Life cycle and properties of B. amyloliquefaciens.

Download (319KB)

Copyright (c) 2025 Russian Academy of Sciences