Reaction mechanism of the formation of N-methyl-N-[2-(diphenylphosphoryl)-ethyl]amide of diphenylphosphorylacetic acid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reaction mechanism of the formation of N -methyl-substituted diphenylphosphorylacetic acid amide was studied by DFT. According to theoretical calculations, at the first stage, explicit allowance for the solvent makes it possible to reduce the activation energy of three elementary stages of the interaction of trichlorophosphine with diphenylphosphorylacetic acid; at the second stage, the interaction of diphenylphosphorylacetic acid chloride with a phosphoryl-containing amine proceeds in one elementary stage.

Sobre autores

A. Kuznetsova

Kazan Federal University

Email: yavereshchagina@yahoo.com

D. Chachkov

Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences - Branch of Federal State Institution “Scientific Research Institute for System Analysis of the RAS”

Email: yavereshchagina@yahoo.com

O. Artyushin

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

Email: yavereshchagina@yahoo.com

N. Bondarenko

Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre “Kurchatov Institute”;National Research Centre “Kurchatov Institute”

Email: yavereshchagina@yahoo.com

Ya. Vereshchagina

Kazan Federal University

Email: yavereshchagina@yahoo.com

Bibliografia

  1. Leoncini A., Huskens J., Verboom W. Chem. Soc. Rev. 2017, 46, 7229-7273. doi: 10.1039/c7cs00574a
  2. Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. Усп. хим. 2016, 85, 943-961.
  3. Alyapyshev M.Y., Babain V.A, Ustynyuk Y.A. Russ. Chem. Rev. 2016, 85, 943-961. doi: 10.1070/rcr4589
  4. Туранов А.Н., Карандашев В.К., Артюшин О.И., Перегудов А.С., Хвостиков В.А., Бондаренко Н.А. ЖНХ. 2020, 65, 837-845.
  5. Turanov A.N., Karandashev V.K., Artyushin O.I., Peregudov A.S., Khvostikov V.A., Bondarenko N.A. Russ. J. Inorg. Chem. 2020, 65, 905-913. doi: 10.1134/s0036023620060248
  6. Turanov A.N., Karandashev V.K., Vinogradova N.M., Sharova E.V., Artyushin O.I. Solvent Extr. Ion Exch. 2014, 32, 408-432. doi: 10.1080/07366299.2013.866854
  7. Vasil'ev A.A., Aleksenko V.Y., Aleksanyan D.V., Kozlov V.A. Mendeleev Commun. 2013, 23, 344-346. doi: 10.1016/j.mencom.2013.11.014
  8. Яркевич А.Н., Сафронова З.В., Петрова Л.Н., Габрельян А.В., Замойский В.Л., Григорьев В.В., Бачурин С.О., Зефиров Н.С. ЖОХ. 2013, 83, 46-50.
  9. Yarkevich A.N., Safronova Z.V., Petrova L.N., Gabrelyan A.V., Zamoyski V.L., Grigor'ev V.V., Bachurin S.O., Zefirov N.S. Russ. J. Gen. Chem. 2013, 83, 41-45. doi: 10.1134/s1070363213010076
  10. Яркевич А.Н., Брель В.К., Махаева Г.Ф., Серебрякова О.Г., Болтнева Н.П., Ковалева Н.В. ЖОХ. 2015, 85, 1120-1125.
  11. Yarkevich A.N., Brel V.K., Makhaeva G.F., Serebryakova O.G., Boltneva N.P., Kovaleva N.V. Russ. J. Gen. Chem. 2015, 85, 1644-1649. doi: 10.1134/s1070363215070129
  12. Шарова Е.В., Артюшин О.И., Одинец И.Л. Усп. хим. 2014, 83, 95-119.
  13. Sharova E.V., Artyushin O.I., Odinets I.L. Russ. Chem. Rev. 2014, 83, 95-119. doi: 10.1070/rc2014v083n02abeh004384
  14. Бондаренко Н.А., Белусь С.К., Артюшин О.И., Перегудов А.С. ЖОХ. 2020, 90, 1867-1875.
  15. Bondarenko N.A., Belus' S.K., Artyushin O.I., Peregudov A.S. Russ. J. Gen. Chem. 2020, 90, 2273-2280. doi: 10.1134/s1070363220120099
  16. Kuznetsova A.A., Chachkov D.V., Artyushin O.I., Bondarenko N.A., Vereshchagina Y.A. Molecules. 2021, 26, 4832. doi: 10.3390/molecules26164832
  17. Верещагина Я.А., Исмагилова Р.Р., Чачков Д.В., Чернышева Н.А. ЖОрХ. 2020, 56, 1509-1515.
  18. Vereshchagina Y.A., Ismagilova R.R., Chachkov D.V., Chernysheva N.A. Russ. J. Org. Chem. 2020, 56, 1696-1701. doi: 10.1134/S1070428020100048
  19. Chachkov D.V., Ismagilova R.R., Vereshchagina Y.A. Molecules. 2020, 25, 2803. doi: 10.3390/molecules25122803
  20. Medvedev M.G., Bushmarinov I.S., Sun J., Perdew J.P., Lyssenko K.A. Science. 2017, aah5975. doi: 10.1126/science.aah5975
  21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 09. Pittsburgh PA: Gaussian Inc. 2009.
  22. Becke A.D. Phys. Revs. A. 1988, 38, 3098-3100. doi: 10.1103/PhysRevA.38.3098
  23. Perdew J.P., Burke K., Wang Y. Phys. Rev. B. 1996, 54, 16533-16539. doi: 10.1103/PhysRevB.54.16533
  24. McLean A.D., Chandler G.S. J. Chem. Phys. 1980, 72, 5639-5648. doi: 10.1063/1.438980

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023