Synthesis and conversions of benzo-substituted 1-[2-methyl4-(methyltio)quinolin-3-yl]propan-2-ones
- Authors: Aleksanyan I.L.1, Hambardzumyan L.P.1
 - 
							Affiliations: 
							
- Yerevan State University
 
 - Issue: Vol 60, No 6 (2024)
 - Pages: 62-68
 - Section: Articles
 - URL: https://rjraap.com/0514-7492/article/view/676673
 - DOI: https://doi.org/10.31857/S0514749224060051
 - EDN: https://elibrary.ru/QZUNQZ
 - ID: 676673
 
Cite item
Abstract
New derivatives of Schiff bases were synthesized using 1-[2-methyl-4-mercaptoquinolin-3-yl]propan-2-ones and 1-[2-methyl-4-(methylthio)quinoline substituted in the benzene ring-3- yl]propan-2-ones as starting materials. To obtain the 4-methylthio derivatives of the Schiff base, the corresponding 4-mercaptoquinoline-propan-2-ones and 3-(2-chloroallyl)-4-mercaptoquinolines were first methylated, followed by acid hydrolysis of the chloro allyl group in the latter samples.
Full Text
About the authors
I. L. Aleksanyan
Yerevan State University
							Author for correspondence.
							Email: ialeksanyan@ysu.am
				                	ORCID iD: 0000-0002-4039-2323
				                																			                												                	Armenia, 							ul. Aleka Manukyana, 1, Yerevan, 375025						
L. P. Hambardzumyan
Yerevan State University
														Email: ialeksanyan@ysu.am
				                	ORCID iD: 0000-0003-1210-0052
				                																			                												                	Armenia, 							ul. Aleka Manukyana, 1, Yerevan, 375025						
References
- Teja C., Khan F.R.N. Chem.-Asian J. 2020, 15 (24), 4153–4167. doi: 10.1002/asia.202001156
 - Matada B.S., Pattanashettar R., & Yernale, N.G. Bioorg. Med. Chem. 2021, 32, 115973. https://doi.org/10.1016/j.bmc.2020.115973
 - Yadav V., Reang, J., Sharma V., Majeed J., Sharma P.C., Sharma K., Giri N., Kumar A., Tonk R.K. Chem. Biol. Drug. Des. 2022, 100 (3), 389–418. doi: 10.1111/cbdd.14099.
 - Kaur T., Bhandari D.D. Biointerface Res. Appl. Chem. 2023, 13 (4), 355–374. https://doi.org/10.33263/BRIAC134.355
 - Patel A., Patel S., Mehta M., Patel Y., Patel R., Shah D., Patel D., Shah U., Patel M., Patel S., Solanki N., Bambharoliya T., Patel S., Nagani A., Patel H., Vaghasiya J., Shah H., Prajapati B., Rathod M., Bhimani B., Patel R., Bhavsar V., Rakholiya B., Patel M., and Patel P. Green Chem. Lett. Rev. 2022, 15 (2), 337–372. https://doi.org/10.1080/17518253.2022.2064194
 - Mokhtar M., Alghamdi K.S., Ahmed N.S., Bakhotmah D., Saleh T.S.J. Enzyme Inhib. Med. Chem. 2021, 36 (1), 1454–1471. https://doi.org/10.1080/14756366.2021.1944126.
 - Desai N.C., Maheta A.S., Rajpara K.M., Joshi V.V., Vaghani H.V., Satodiya H.M.J. Saudi Chem. Soc. 2014, 18 (6), 963–971. https://doi.org/10.1016/j.jscs.2011.11.021.
 - Yadav P., Bhalla A. Chemistry Select. 2022, 7, e202201721. https://doi.org/10.1002/slct.202201721
 - Shivangi S., Kuldeep S., Shivendra S. Curr. Org. Synthes. 2023, 20 (6), 606–629. https://doi.org/10.2174/1570179420666221004143910
 - Govindarao K., Srinivasan N., Suresh R., Raheja R.K., Annadurai S., Bhandare R.R., Shaik A.B.J. Saudi Chem. Soc. 2022, 26 (3), 101471. https://doi.org/10.1016/j.jscs.2022.101471.
 - Li K., Li Y., Zhou D., Fan Y., Guo H., Ma T., Wen J., Liu D., Zhao L. Bioorg. Med. Chem. 2016, 24 (8), 1889–1897. https://doi.org/10.1016/j.bmc.2016.03.016.
 - Batista V.f., Pinto D.C.G.A. and Silva A.M.S. ACS Sustainable Chem. Engineering. 2016, 4 (8), 4064–4078. https://doi.org/10.1021/acssuschemeng.6b01010
 - Аветисян А.А., Алексаиян И.Л., Саргсян К.С. ЖОрХ. 2007 43 (3) 423–426. [Avetisyan A.A., Aleksanyan I.L., Sargsyan K.S. Russ. J. Org. Chem. 2007, 43 (3) 422–425.] https://doi.org/10.1134/S1070428007030165
 - Алексанян И.Л., Амбарцумян Л.П. ЖОрХ. 2021, 57 (8), 1170–1176. [Aleksanyan I.L., Hambardzumyan L.P. Russ. J. Org. Chem. 2021, 57 (8) 1289–1294.] https://doi.org/10.1134/S107042802108008X
 
				
			
					
						
						
						
						
									




