A General Approach to Molecular Reconstruction Accuracy Estimation
- Autores: Glazov N.A.1, Zagoruiko A.N.1
-
Afiliações:
- Boreskov Institute of Catalysis, SB RAS
- Edição: Volume 65, Nº 5 (2024)
- Páginas: 539-550
- Seção: ПАМЯТИ ОЛЕГА НАУМОВИЧА ТЕМКИНА
- URL: https://rjraap.com/0453-8811/article/view/682395
- DOI: https://doi.org/10.31857/S0453881124050044
- EDN: https://elibrary.ru/QVSCRG
- ID: 682395
Citar
Resumo
A generalization to a few molecular reconstruction methods has been proposed along with a general approach for the accuracy estimation of molecular reconstruction methods. The proposed algorithm estimates the covariance matrix of model parameters based on the matrix of calculated property derivatives with respect to the model parameters and the covariance matrix of measurement error, which allows one to estimate the concentration range in which the solution will not violate collected experimental data. The proposed algorithm is especially easy to use when forward automatic differentiation is employed to find derivatives.
Texto integral

Sobre autores
N. Glazov
Boreskov Institute of Catalysis, SB RAS
Autor responsável pela correspondência
Email: glazov@catalysis.ru
Rússia, 5 Lavrentiev Ave., Novosibirsk, 630090
A. Zagoruiko
Boreskov Institute of Catalysis, SB RAS
Email: glazov@catalysis.ru
Rússia, 5 Lavrentiev Ave., Novosibirsk, 630090
Bibliografia
- Зайнуллин Р.З., Коледина К.Ф., Губайдуллин И.М., Ахметов А.Ф., Коледин С.Н. // Кинетика и катализ. 2020. Т. 61. № 4. С. 550. (Zaynullin R.Z., Koledina K.F., Gubaydullin I.M., Ahmetov A.F., Koledin S.N. Kinetic Model of Catalytic Gasoline Reforming with Consideration for Changes in the Reaction Volume and Thermodynamic Parameters // Kinet. Catal. 2020. V. 61. P. 613. https://doi.org/10.1134/S002315842004014X)
- Заварухин С.Г., Яковлев В.А. // Кинетика и катализ. 2021. Т. 62. № 5 С. 647. (Zavarukhin S.G., Yakovlev V.A. Mathematical Modeling of the Nonisothermal Pyrolysis of Sorghum Biomass Based on a Three-Component Kinetic Model // Kinet. Catal. 2021. V. 62. P. 688. https://doi.org/10.1134/S0023158421050128)
- Zagoruiko A.N., Belyi A.S., Smolikov M.D, Noskov A.S. // Catal. Today. 2014. V. 220–222. P. 168.
- Temkin O.N., Zeigarnik A.V., Kuzmin A.E., Bruk L.G., Slivinskii E.V. // Russ. Chem. Bull. 2002. V. 51. № 1. Р. 1.
- Ren Y., Liao Z., Sun J., Jiang B., Wang J., Yang Y., Wu Q. // Chem. Eng. 2019. V. 257. P.761.
- Hudebine D., Verstraete J.J. // Oil Gas Sci. Technol. 2011. V. 66. № 3. P. 437.
- Neurock M., Libanati C., Nigam A., Klein M.T. // Chem. Eng. Sci. 1990. V. 45. № 8. P. 2083.
- Neurock M., Nigam A., Trauth D., Klein M.T. // Chem. Eng. Sci. 1994. V. 49. № 24. P. 4153.
Arquivos suplementares
