A General Approach to Molecular Reconstruction Accuracy Estimation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A generalization to a few molecular reconstruction methods has been proposed along with a general approach for the accuracy estimation of molecular reconstruction methods. The proposed algorithm estimates the covariance matrix of model parameters based on the matrix of calculated property derivatives with respect to the model parameters and the covariance matrix of measurement error, which allows one to estimate the concentration range in which the solution will not violate collected experimental data. The proposed algorithm is especially easy to use when forward automatic differentiation is employed to find derivatives.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Glazov

Boreskov Institute of Catalysis, SB RAS

Хат алмасуға жауапты Автор.
Email: glazov@catalysis.ru
Ресей, 5 Lavrentiev Ave., Novosibirsk, 630090

A. Zagoruiko

Boreskov Institute of Catalysis, SB RAS

Email: glazov@catalysis.ru
Ресей, 5 Lavrentiev Ave., Novosibirsk, 630090

Әдебиет тізімі

  1. Зайнуллин Р.З., Коледина К.Ф., Губайдуллин И.М., Ахметов А.Ф., Коледин С.Н. // Кинетика и катализ. 2020. Т. 61. № 4. С. 550. (Zaynullin R.Z., Koledina K.F., Gubaydullin I.M., Ahmetov A.F., Koledin S.N. Kinetic Model of Catalytic Gasoline Reforming with Consideration for Changes in the Reaction Volume and Thermodynamic Parameters // Kinet. Catal. 2020. V. 61. P. 613. https://doi.org/10.1134/S002315842004014X)
  2. Заварухин С.Г., Яковлев В.А. // Кинетика и катализ. 2021. Т. 62. № 5 С. 647. (Zavarukhin S.G., Yakovlev V.A. Mathematical Modeling of the Nonisothermal Pyrolysis of Sorghum Biomass Based on a Three-Component Kinetic Model // Kinet. Catal. 2021. V. 62. P. 688. https://doi.org/10.1134/S0023158421050128)
  3. Zagoruiko A.N., Belyi A.S., Smolikov M.D, Noskov A.S. // Catal. Today. 2014. V. 220–222. P. 168.
  4. Temkin O.N., Zeigarnik A.V., Kuzmin A.E., Bruk L.G., Slivinskii E.V. // Russ. Chem. Bull. 2002. V. 51. № 1. Р. 1.
  5. Ren Y., Liao Z., Sun J., Jiang B., Wang J., Yang Y., Wu Q. // Chem. Eng. 2019. V. 257. P.761.
  6. Hudebine D., Verstraete J.J. // Oil Gas Sci. Technol. 2011. V. 66. № 3. P. 437.
  7. Neurock M., Libanati C., Nigam A., Klein M.T. // Chem. Eng. Sci. 1990. V. 45. № 8. P. 2083.
  8. Neurock M., Nigam A., Trauth D., Klein M.T. // Chem. Eng. Sci. 1994. V. 49. № 24. P. 4153.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the calculated average molecular mass on the model parameter: a wide range of molecular masses corresponds to a narrow range of parameters (a) and a narrow range of molecular masses corresponds to a wide range of parameters (b).

Жүктеу (20KB)
3. Fig. 2. Dependence of the error of the found parameter on the parameter value.

Жүктеу (12KB)
4. Fig. 3. Dependence of the average absolute error in determining concentration on the model parameter.

Жүктеу (12KB)
5. Fig. 4. Dependence of the calculated molecular mass of the mixture on the value of the model parameter for exact and imprecise constraints.

Жүктеу (19KB)
6. Fig. 5. Average molecular weight (a) and mass fraction of carbon (b) of the mixture depending on the model parameters.

Жүктеу (29KB)
7. Fig. 6. Dependence of the logarithm of the standard deviation of the mean (a) and variance (b) on the true parameters of the model.

Жүктеу (36KB)
8. Fig. 7. Dependence of the logarithm of the standard deviation of the mean (a), variance (b) and correlation coefficient (c).

Жүктеу (28KB)