Structure and Activity of Catalytic Systems Synthesized by Precipitation in Subcritical Water in the Fischer–Tropsch Liquid-Phase Synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern developments in the field of creating fuels from alternative sources are aimed at producing liquid gasoline-type hydrocarbons with high yield. Fischer–Tropsch synthesis (FTS) is a well–known method for more than a hundred years that allows to obtain a wide range of hydrocarbons from carbon and hydrogen oxides. In this work, three metal-containing catalytic systems deposited on super-crosslinked polystyrene (HPS) have been synthesized (2% Fe– HPS, 1% Ru– HPS and 2% Fe–1% Ru– HPS) by precipitation in subcritical water, and their catalytic effect in the process of liquid-phase FTS was studied. The addition of Ru to the Fe-containing catalyst leads to an increase in the dispersion of active phase particles and, consequently, an increase in the activity of the catalytic system. The bimetallic catalyst 2% Fe–1% Ru–HPS showed a catalytic activity 1.5 times higher than that of the sample 2%Fe–HPS, selectivity with respect to alkanes C5–C11 was 98.5 mol. %. Based on data from kinetic experiments and physico-chemical studies of the bimetallic catalyst, a scheme for the liquid phase process was proposed. the Fischer–Tropsch synthesis.

Full Text

Restricted Access

About the authors

M. E. Markova

Tver State Technical University; Tver State University

Author for correspondence.
Email: mashulikmarkova@gmail.com
Russian Federation, A. Nikitin str., 22, Tver, 170026; Zhelyabova str., 33, Tver, 170100

A. A. Stepacheva

Tver State Technical University

Email: mashulikmarkova@gmail.com
Russian Federation, A. Nikitin str., 22, Tver, 170026

A. V. Bykov

Tver State Technical University

Email: mashulikmarkova@gmail.com
Russian Federation, A. Nikitin str., 22, Tver, 170026

Y. V. Larichev

Boreskov Institute of Catalysis SB RAS

Email: mashulikmarkova@gmail.com
Russian Federation, Acad. Lavrentieva ave., 5, Novosibirsk, 630090

V. Y. Doluda

Tver State Technical University

Email: mashulikmarkova@gmail.com
Russian Federation, A. Nikitin str., 22, Tver, 170026

O. P. Tkachenko

N.D. Zelinsky Institute of Organic Chemistry RAS

Email: mashulikmarkova@gmail.com
Russian Federation, Leninsky prosp., 47, Moscow, 119991

M. G. Sulman

Tver State Technical University

Email: mashulikmarkova@gmail.com
Russian Federation, A. Nikitin str., 22, Tver, 170026

References

  1. van Steen E., Claeys M. // Chem. Eng. Technol. 2008. V. 31. P. 655.
  2. Tijmensen M.J.A., Faaij A.P.C., Hamelinck C.N., van Hardeveld M.R.M. // Biomass Bioenergy. 2002. V. 23. P. 129.
  3. Соломоник И.Г., Грязнов К.О., Пушина Е.А., Приходько Д.Д., Мордкович В.З. // Кинетика и катализ. 2022. Т. 63. № 3. С. 333. (Solomonik I.G., Gryaznov K.O., Pushina E.A., Prikhodko D.D., Mordkovich V.Z. // Kinet. Catal. 2022. V. 63. №. 3. P. 279.)
  4. Яковенко Р.Е., Зубков И.Н., Нарочный Г.Б., Папета О.П., Денисов О.Д., Савостьянов А.П. // Кинетика и катализ. 2020. Т. 61. № 2. С. 278. (Yakovenko R.E., Zubkov I.N., Narochniy G.B., Papeta O.P., Denisov O.D., Savost’yanov A.P. // Kinet. Catal. 2020. V. 61. 3. 2. P. 310.)
  5. Чернавский П.А., Панкина Г.В., Казанцев Р.В., Максимов С.В., Купреенко С.Ю., Харланов А.Н., Елисеев О.Л. // Кинетика и катализ. 2022. Т. 63. № 3. С. 363. (Chernavskii P.A., Pankina G.V., Maksimov S.V., Kupreenko S.Y., Kharlanov A.N., Kazantsev R.V., Eliseev O.L. // Kinet. Catal. 2022. V. 63. № 3. P. 304.)
  6. Buthelezi A.S., Tucker C.L., Heeres H.J., Shozi M.L., van de Bovenkamp H.H., Ntola P. // Res. Chem. 2024. V. 9. Art. 101623.
  7. Eran T.N., Guyot J., Boffito D.C., Patience G.S. // Chem. Eng. J. 2024. Vol. 500. Art. 156796.
  8. Gavrilović Lj., Kazi S.S., Oliveira A., Encinas O.L.I., Blekkan E.A. // Catal. Today. 2024. V. 432. Art. 114614.
  9. Gong J., Shen L., Liu Y., Qiao E., Liu L., Min F. // Fuel. 2024. V. 364. Art. 131125.
  10. Schulz H. // Appl. Catal. A: Gen. 2020. V. 602. P. 117695.
  11. Shi B., Liao Y., Callihan Z.J., Shoopman B.T., Luo M. // Appl. Catal. A: Gen. 2020. V. 602. P. 117607.
  12. Iglesia E., Soled S.L., Fiato R.A., Via G.H. // J. Catal. 1993. V. 143. P. 345.
  13. Raje A.P., O’Brien R.J., Davis B.H. // J. Catal. 1998. V. 180. № 1. P. 36.
  14. Ngantsoue-Hoc W., Zhang Y.Q., O’Brien R.J., Luo M.S., Davis B.H. // Appl. Catal. A: Gen. 2002. V. 236. P. 77.
  15. Bai L., Xiang H.W., Li Y.W., Han Y.Z., Zhong B. // Fuel. 2002. V. 81. P. 1577.
  16. Ma G., Wang X., Xu Ya., Wang Q., Wang J., Lin J., Wang H., Dong Ch., Zhang Ch., Ding M. // ACS Appl. Energy Mater. 2018. V. 1. № 8. P. 4304.
  17. Li S., Krishnamoorthy S., Li A., Meitzner G.D., Iglesia E. // J. Catal. 2002. V. 206. P. 202.
  18. Liuzzi D., P´erez-Alonso F.J., Rojas S. // Fuel. 2021. V. 293. P. 120435.
  19. Fraser I., Rabiua A.M., van Steen E. // Energy Procedia. 2016. V. 100. P. 210.
  20. Badoga S., Kamath G., Dalai A. // Appl. Catal. A: Gen. 2020. V. 607. P. 117861.
  21. Alayata A., Echeverria E., Mcllroy D.N., McDonald A.G. // Fuel Proc. Technol. 2018. V. 177. P. 89.
  22. Liu X., Ma C., Zhao W., Zhang J., Chen J. // J. Fuel Chem. Technol. 2021. V. 49. № 10. P. 1504.
  23. Markova M.E., Stepacheva A.A., Kosivtsov Y.Y., Sidorov A.I., Matveeva V.G., Sulman M.G. // Rus. J. Phys. Chem. B. 2021. V. 15. P. 1120.
  24. Маркова М.Е., Гавриленко А.В., Степачёва А.А., Молчанов В.П., Матвеева В.Г., Сульман М.Г., Сульман Э.М. // Кинетика и катализ. 2019. Т. 60. № 5. С. 624. (Markova M.E., Gavrilenko A.V., Stepacheva A.A., Molchanov V.P., Matveeva V.G., Sulman M.G., Sulman E.M. // Kinet. Catal. 2019. V. 60. № 5. P. 618.)
  25. Larichev Yu.V., Tuzikov F.V. // J. Appl. Cryst. 2013. V. 46. № 3. P. 752.
  26. Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-Ray photoelectron spectroscopy. A reference book of standard data for use in X-ray photoelectron spectroscopy. Perkin‐Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 261 p.
  27. Li C., Che W., Liu S.-Y., Liao G. // Mater. Today Chem. 2023. V. 29. Art. 101392.
  28. Bykov A.V., Demidenko G.N., Nikoshvili L.Zh., Sulman M.G., Kiwi-Minsker L. // Chem. Eng. Technol. 2021. V. 44. № 11. P. 1955.
  29. Schipanskaya E.O., Stepacheva A.A., Markova M.E., Rud D.V., Nikoshvili L.Zh., Sidorov A.I., Matveeva V.G., Sulman M.G. // Catal. Chem. Eng. Technol. 2021. V. 44. № 11. P. 2109.
  30. Stepacheva A.A., Sidorov A.I., Matveeva V.G., Sulman M.G., Sulman E.M. // Chem. Eng. Technol. 2019. V. 42. № 4. P. 780.
  31. Matveeva V.G., Stepacheva A.A., Shimanskaya E.I., Markova M.E., Sidorov A.I., Bykov A.V., Sul’man M.G., Sul’man E.M. // Rus. J. Phys. Chem. B. 2019. V. 13. № 6. P. 1044.
  32. Manaenkov O.V., Kislitsa O.V., Matveeva V.G., Kosivtsov Y.Y., Sulman M.G. // ChemChemTech. 2023. V. 66. № 8. P. 70.
  33. Stepacheva A.A., Lugovoy Y.V., Manaenkov O.V., Sidorov A.I., Matveeva V.G., Sulman M.G., Sulman E.M. // Pure Appl. Chem. 2020. V. 92. № 6. P. 817.
  34. Devadas A., Baranton S., Coutanceau C. // Front. Energy Res. 2020. V. 8. Art. 571704.
  35. Liu H., Xia G., Zhang R., Jiang P., Chen J., Chen Q. // RSC Adv. 2017. V. 7. P. 3686.
  36. Noberi C., Kaya C. // SN Appl. Sci. 2019. V. 1. P. 947.
  37. Liang C., Liu H., Zhou J., Peng X., Zhang H. // J. Chem. 2015. Art. 791829.
  38. Moradi Z., Ghorbani-Choghamarani A. // Sci. Rep. 2021. V. 11. P. 23967.
  39. Wang Y., Peng Z., Jiang W. // J. Mater. Sci.: Mater. Electron. 2015. V. 26. P. 4880.
  40. Khoshsang H., Ghaffarinejad A., Kazemi H., Jabarian S. // J. Water. Environ. Nanotechnol. 2018. V. 3. № 3. P. 191.
  41. Grosvenor A.P., Kobe B.A., Biesinger M.C., Mclntyre N.S. // Surf. Interface Anal. 2004. V. 36. P. 1564.
  42. Lesiak B., Rangam N., Jiricek P., Gordeev I., Toth J., Kover L., Mohai M., Borowicz P. // Front. Chem. 2019. V. 7. P. 642.
  43. Ge X., Liu H., Ding X., Liu Y. // Nanomaterials. 2022. V. 12. № 3. P. 539.
  44. Srivatsa S.C., Kumar V.P., Viswanadham B., Amirineni S. // J. Nanosci. Nanotechnol. 2015. V.15. № 7. P. 5403.
  45. Hadjiivanov K., Lavalley J.-C., Lamotte J., Mauge F., Saint-Just J., Che M. // J. Catal. 1998. V. 176. P. 415.
  46. McQuire M.W., Rochester C.H. // J. Catal. 1993. V. 141. P. 355.
  47. Mizushima T., Tohji K., Udagawa Y., Ueno A. // J. Am. Chem. Soc. 1990. V. 112. P. 7887.
  48. Kharlanov A.N., Pankina G.V., Lunin V.V. // Rus. J. Phys. Chem. 2019. V. 93. № 12. P. 1780.
  49. Johnston C., Jorgensen N., Rochester C.H. // J. Chem. Soc. Faraday Trans. I. 1988. V. 84. № 1. P. 309.
  50. Bukur D.B., Todic B., Elbashir N. // Catal. Today. 2016. V. 275. P. 66.
  51. Hibbitts D.D., Loveless B.T., Neurock M., Iglesia E. // Angew. Chem. Int. Ed. 2013. V. 52. № 47. P. 12273.
  52. Carballo J.M.G., Finocchio E., García-Rodriguez S., Ojeda M., Fierro J.L.G., Busca G. // Catal. Today. 2013. V. 214. P. 2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Particle size distribution obtained by SAXS for 2% Fe–SPS, 1% Ru–SPS and 2% Fe–1% Ru–SPS samples.

Download (18KB)
3. Rice. 2. X-ray diffraction patterns of samples: SPS and 1% Ru–SPS (a), 2% Fe–1% Ru–SPS (b), and 10% Fe–1% Ru–SPS (c).

Download (55KB)
4. Fig. 3. High-resolution spectra for the Fe2p and Ru3d sublevels for the 2% Fe–SPS (a), 1% Ru–SPS (b), 2% Fe–1% Ru–SPS (c, d) and 2% Fe–1% Ru–SPS-ref (d, f) samples.

Download (154KB)
5. Fig. 4. IR diffuse reflectance spectra of CO adsorption for samples of 1% Ru–SPS (a), 2% Fe–SPS (b) and 2% Fe–1% Ru–SPS (c).

Download (54KB)
6. Fig. 5. Kinetic curves of CO (a) and H2 (b) consumption in the Fischer–Tropsch synthesis in the presence of 1% Ru–SPS, 2% Fe–SPS and 2% Fe–1% Ru–SPS catalysts.

Download (30KB)
7. Fig. 6. Curves of formation of liquid-phase Fischer–Tropsch synthesis products in the presence of 2% Fe–SPS (a), 1% Ru–SPS (b), 2% Fe–1% Ru–SPS (c) after 1.5 (●), 3 (○), 6 (▼) and 9 h (∆) from the beginning of the experiment.

Download (44KB)
8. Scheme 1. Scheme of liquid-phase Fischer–Tropsch synthesis.

Download (50KB)