Highly dispersed Pd nanoparticles deposited on Sibunite by laser electrodispertion in Suzuki-Miyaura catalytic reaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of the study of the Suzuki-Miyaura reaction catalysis with aryl bromides using palladium catalyst precursors with a low metal content (10-2–10-1 wt %), deposited by laser electrodispersion of palladium on the surface of a carbon support (Sibunite). The analysis of the patterns of activity and stability of the synthesized catalysts, as well as their differential selectivity, along with an analysis of the changes in the state of the catalysts before the catalytic reaction and after its completion, allowed us to conclude that catalysis occurs with the participation of palladium nanoparticles and single atoms located on the surface of the carbon support.

Full Text

Restricted Access

About the authors

A. F. Schmidt

Irkutsk State University

Author for correspondence.
Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, K. Marx Str.,1, Irkutsk, 664003

A. A. Kurokhtina

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, K. Marx Str.,1, Irkutsk, 664003

E. V. Larina

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, K. Marx Str.,1, Irkutsk, 664003

N. A. Lagoda

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, K. Marx Str.,1, Irkutsk, 664003

T. A. Grigorieva

Irkutsk State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, K. Marx Str.,1, Irkutsk, 664003

I. N. Krotova

Lomonosov Moscow State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, Leninskie Gory 1 build 3., GSP-1, Moscow, 119991

K. I. Maslakov

Lomonosov Moscow State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, Leninskie Gory 1 build 3., GSP-1, Moscow, 119991

S. A. Nikolaev

Lomonosov Moscow State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, Leninskie Gory 1 build 3., GSP-1, Moscow, 119991

S. A. Gurevich

Ioffe Institute of the Russian Academy of Sciences

Email: aschmidt@chem.isu.ru
Russian Federation, Polytekhnicheskaya st., 26, St. Petersburg, 194021

D. A. Yavsin

Ioffe Institute of the Russian Academy of Sciences

Email: aschmidt@chem.isu.ru
Russian Federation, Polytekhnicheskaya st., 26, St. Petersburg, 194021

T. N. Rostovshchikova

Lomonosov Moscow State University

Email: aschmidt@chem.isu.ru

Chemical Department

Russian Federation, Leninskie Gory 1 build 3., GSP-1, Moscow, 119991

References

  1. Valentini F., Di Erasmo B., Ciani M., Chen S., Gu Y., Vaccaro L. // Green Chem. 2024. V. 26. P. 4871.
  2. Buskes M.J., Blanco M.-J. // Molecules. 2020. V. 25. Article № 3493.
  3. Devendar P., Qu R.-Y., Kang W.-M., He B., Yang G.-F. // J. Agric. Food Chem. 2018. V. 66. P. 8914.
  4. Biffis A., Centomo P., del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. P. 2249.
  5. Шмидт А.Ф., Курохтина А.А. // Кинетика и катализ. 2012. Т. 53. № 6. С. 760. (Schmidt A.F., Kurokhtina A.A. // Kinet. Catal. 2012. V. 53. P. 714.)
  6. Bourouina A., Meille V., de Bellefon C. // Catalysts. 2019. V. 9. P. 60.
  7. Ananikov V.P., Beletskaya I.P. // Organometallics. 2012. V. 31. P. 1595.
  8. Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. // Curr. Opin. Green Sustain. Chem. 2021. V. 31. P. 100502.
  9. Eremin D.B., Galushko A.S., Boiko D.A., Pentsak E.O., Chistyakov I. V., Ananikov V. P. // J. Am. Chem. Soc. 2022. V. 144. № 13. P. 6071.
  10. Ростовщикова Т.Н., Локтева Е.С., Шилина М.И., Голубина Е.В., Маслаков К.И., Кротова И.Н., Брыжин А.А., Тарханова И.Г., Удалова О.В., Кожевин В.М., Явсин Д.А., Гуревич С.А. // Жур. Физ. Хим. 2021. Т. 95. № 3. С. 348. (Rostovshchikova T.N., Lokteva E.S., Shilina M.I., Golubina E.V., Maslakov K.I., Krotova I.N., Bryzhin A.A., Tarkhanova I.G., Udalova O.V., Kozhevin V.M., Yavsin D.A., Gurevich S.A. // Russ. J. Phys. Chem. 2021. V. 95. № 3. P. 451.)
  11. Ростовщикова Т.Н., Шилина М.И., Гуревич С.А., Явсин Д.А., Веселов Г.Б., Ведягин А.А. // Докл. РАН. Химия, науки о материалах. 2022. Т. 506. № 1. С. 48. (Rostovshchikova T.N., Shilina M.I., Gurevich S.A., Yavsin D.A., Veselov G.B., Vedyagin A.A. // Doklady Physical Chemistry. 2022. V. 506. № 1. P. 123.)
  12. Lokteva E.S., Peristyy A.A., Kavalerskaya N.E., Golubina E.V., Yashina L.V., Rostovshchikova T.N., Gurevich S.A., Kozhevin V.M., Yavsin D.A., Lunin V.V. // Pure Appl. Chem. 2012. V. 84. № 3. P. 495.
  13. Thomas J.M. // Proc. R. Soc. A. 2012. V. 468. P. 1884.
  14. Ростовщикова Т.Н., Николаев С.А., Кротова И.Н., Маслаков К.И., Удалова О.В., Гуревич С.А., Явсин Д.А., Шилина М.И. // Изв. АН Сер Хим. 2022. № 6. С. 1179. (Rostovshchikova T.N., Nikolaev S.A., Krotova I.N., Maslakov K.I., Udalova O.V., Gurevich S.A., Yavsin D.A., Shilina M.I. // Russ. Chem. Bull. 2022. V. 71. № 6. P. 1179.)
  15. Bryzhin A.A., Golubina E.V., Maslakov K.I., Lokteva E.S., Tarkhanova I.G., Gurevich S.A., Yavsin D.A., Rostovshchikova T.N. // ChemCatChem. 2020. V. 12. № 17. P. 4396.
  16. Rostovshchikova T.N., Shilina M.I., Gurevich S.A., Yavsin D.A., Veselov G.B., Stoyanovskii V.O., Vedyagin A.A. // Materials. 2023. V. 16. Art. 16093501.
  17. Локтева Е.С., Ростовщикова Т.Н., Качевский С.А., Голубина Е.В., Смирнов В.В., Стахеев А.Ю., Телегина Н.С., Гуревич С.А., Кожевин В.М., Явсин Д.А. // Кинетика и катализ. 2008. Т. 49. № 5. С. 784. (Lokteva E.S., Rostovshchikova T.N., Kachevskii S.A., Golubina E.V., Smirnov V.V., Stakheev A.Yu, Telegina N.S., Gurevich S.A., Kozhevin V.M., Yavsin D.A. // Kinet. Catal. 2008. V. 49. № 5. P. 748.)
  18. Golubina E.V., Rostovshchikova T.N., Lokteva E.S., Maslakov K.I., Nikolaev S.A., Egorova T.B., Gurevich S.A., Kozhevin V.M., Yavsin D.A., Yermakov A.Ye. // Pure Appl. Chem. 2018. V. 90. № 11. P. 1685.
  19. Golubina E.V., Rostovshchikova T.N., Lokteva E.S., Maslakov K.I., Nikolaev S.A., Shilina M.I., Gurevich S.A., Kozhevin V.M., Yavsin D.A., Slavinskay E.M. // Appl. Surf. Sci. 2021. V. 536. Art. 147656.
  20. Lou Y., Xu J., Zhang Y., Pan C., Dong Y., Zhu Y. // Mater. Today Nano. 2020. V. 12. Art. 100093.
  21. Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A., Gurevich S.A., Yavsin D.A., Krotova I.N., Zelikman V.M., Rostovshchikova T.N., Tarkhanova I.G. // Mendeleev Commun. 2023. V. 33. P. 177.
  22. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А., Явсин Д.А., Гуревич С.А., Зеликман В.М., Кротова И.Н., Ростовщикова Т.Н., Тарханова И.Г. // Кинетика и Катализ. Т. 64. № 1. С. 39. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A., Yavsin D.A., Gurevich S.A., Zelikman V.M., Krotova I.N., Rostovshchikova T.N., Tarkhanova I.G. // Kinet. Catal. 2023. V. 64. № 1. P. 32.)
  23. Galushko A.S., Ilyushenkova V.V., Burykina J.V., Shaydullin R.R., Pentsak E.O., Ananikov V.P. // Inorganics. 2023. V. 11. № 6. P. 260.
  24. Felpin F.X., Ayad T., Mitra S. // Eur. J. Org. Chem. 2006. № 12. P. 2679.
  25. Плаксин Г.В., Бакланова О.Н., Лавренов А.В., Лихолобов В.А. // Химия твердого топлива. 2014. Т. 48. № 6. С. 26. (Plaksin G.V., Baklanova O.N., Lavrenov A.V., Likholobov V.A. // Solid Fuel Chem. 2014. V. 48. № 6. P. 349.)
  26. Beletskaya I.P., Cheprakov A.V. // Chem. Rev. 2000. V. 100. P. 3009.
  27. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2019. Т. 60. № 5. С. 555. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2019. V. 60. P. 551.)
  28. Excel for Scientists and Engineers: Numerical Methods. E.J. Billo. John Wiley & Sons, 2007. 480 р.
  29. Stonkus O.A., Kibis L.S., Podyacheva O.Y., Slavinskaya E.M., Zaikovskii V.I., Hassan A.H., Hampel S., Leonhardt A., Ismagilov Z.R., Noskov A.S., Boronin A.I. // ChemCatChem. 2014. V. 6. P. 2115.
  30. Teschner D., Révay Z., Borsodi J., Hävecker M., KnopGericke A., Schlögl R., Milroy D., Jackson S.D., Torres D., Sautet P. // Angew. Chem. Int. Ed. 2008. V. 47. P. 9274.
  31. Slavinskaya E.M., Kardash T.Yu., Stonkus O.A., Gulyaev R.V., Lapin I.N., Svetlichnyi V.A., Boronin A.I. // Catal. Sci. Technol. 2016. V. 6. P. 6650.
  32. Pillo T., Zimmermann R., Steiner P., Hüfner S. // J. Phys. Condens. Matter. 1997. V. 9. P. 3987.
  33. Köhler K., Kleist W., Pröckl S.S. // Inorg. Chem. 2007. V. 46. P. 1876.
  34. Pryjomska-Ray I., Gniewek A., Trzeciak A.M., Ziółkowski J.J., Tylus W. // Top. Catal. 2006. V. 40. P. 173.
  35. Reimann S., Stötzel J., Frahm R., Kleist W., Grunwaldt J.D., Baiker A. // J. Am. Chem. Soc. 2011. V. 133. № 11. P. 3921.
  36. Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P. // J. Am. Chem. Soc. 2023. V. 145. № 16. P. 9092.
  37. Galushko A.S., Ananikov V.P. // ACS Catal. 2024. V. 14. № 1. P. 161.
  38. Schmidt A.F., Kurokhtina A.A., Larina E.V. // Catal. Sci. Technol. 2014. V. 4. P. 3439.
  39. Schmidt A.F., Al Halaiqa A., Smirnov V.V. // Synlett. 2006. № 18. P. 2861.
  40. Appleby K.M., Dzotsi E., Scott N.W.J., Dexin G., Jeddi N., Whitwood A.C., Pridmore N.E., Hart S., Duckett S.B., Fairlamb I.J.S. // Organometallics. 2021. V. 40. № 21. P. 3560.
  41. Kurokhtina A.A., Larina E.V., Schmidt A.F., Malaika A., Krzyżyńska B., Rechnia P., Kozłowski M. // J. Mol. Catal. A: Chem. 2013. V. 379. P. 327.
  42. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2012. Т. 53. № 1. С. 86. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2012. V. 53. № 1. P. 84.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TEM micrographs of different resolutions (a–g) of the 0.08Pd/C-0.5 sample.

Download (8MB)
3. Fig. 2. TEM micrographs of the 0.08Pd/C-0.5 sample (a, b); EDA spectrum (c) of the region highlighted in the image (a); Pd distribution map (d) in the image (b); histograms of Pd particle size distributions (d) and distances between the nearest particles (e).

Download (6MB)
4. Fig. 3. TEM micrographs of samples 0.04Pd/C-1 (a, b); 0.007Pd/C-2 (c, d); 0.04Pd/C-2 (d, e).

Download (18MB)
5. Fig. 4. TEM micrographs of the 4Pd/C comparison sample obtained by the impregnation method (a–d) and a histogram of the particle size distribution in it (e).

Download (13MB)
6. Fig. 5. TEM micrograph (a), EDA spectra (b–d) of marked locations 1, 2 and 3, image and TEM-EDA map of Pd distribution (d–f) for the 4Pd/C sample obtained by the impregnation method.

Download (1MB)
7. Fig. 6. XPS spectra of Pd3d samples 0.007Pd/C-2, 0.08Pd/C-0.5 and 4Pd/C.

Download (1MB)
8. Fig. 7. TOF (a) and TON (b) values ​​calculated for the Suzuki-Miyaura reaction (Scheme 1) in the presence of a number of Pd/C samples obtained by the LED method, as well as a reference sample prepared by the impregnation method (in the figure in the red frame).

Download (1MB)
9. Fig. 8. Phase trajectories of the Suzuki-Miyaura reaction with phenylboronic acid (Scheme 1), plotted in the coordinates of the concentrations of biaryls formed from competing 4-bromoacetophenone and bromobenzene, in the presence of Pd/C samples obtained by the LED method, as well as a comparison sample prepared by the impregnation method (in the figure in the red frame).

Download (819KB)
10. Fig. 9. TEM micrographs of different resolutions (a–g) of the 0.08Pd/C-0.5 sample isolated from the reaction mixture after completion of the catalytic reaction.

Download (11MB)
11. Fig. 10. TEM micrographs (a, b) of the 0.08Pd/C-0.5 sample isolated from the reaction mixture after the completion of the catalytic reaction; EDA spectrum (c) from the region highlighted in the image (a); Pd distribution map (d) in the image (b).

Download (1MB)
12. Scheme 1. Suzuki-Miyaura reaction under conditions of competition between a pair of aryl bromides.

Download (752KB)
13. Scheme 2. Mutual transformations of different forms of palladium in catalytic systems of the Suzuki–Miyaura reaction.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences