Kinetic Peculiarities of Nucleic Acid Elongation as a Multistage Cosequent Enzymatic Reaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article investigates kinetics of nucleic acid elongation as a multistage consequent reaction curling up to cycle. There is represented a matematically precise proof of empiric formulae used to estimate elongation time depending on nucleotide chain length. There are given some estimations of characteristic elongation time for typical chain lengths, for example for new coronavirus (SARS-nCoV-2). There is also investigated stability of elongation kinetics and at typical chain lenghts is shown an existance of instable oscillating solution component in addition to main exponential component.

About the authors

A. V. Lukovenkov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: luks.mipt@gmail.com
Russia, 119334, Moscow, Kosygina str., 4

V. I. Bykov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University, Institute of Physicochemical Foundations of the Functioning of Neural Network
and Artificial Intellegence

Email: luks.mipt@gmail.com
Russia, 119334, Moscow, Kosygina str., 4; Russia, 119192, Moscow, Lomonosovsky avenue, 27/1, of. E801-E804, A818

S. D. Varfolomeev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University, Institute of Physicochemical Foundations of the Functioning of Neural Network
and Artificial Intellegence; Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Ensymology

Email: luks.mipt@gmail.com
Russia, 119334, Moscow, Kosygina str., 4; Russia, 119192, Moscow, Lomonosovsky avenue, 27/1, of. E801-E804, A818; Russia, 119192, Moscow, Kolmogorova str., 1, building 11b

References

  1. Mullis K.B., Smith M. The Polymerase Chain Reaction / Stockholm: Nobel media AB. Nobel Lecture. December 8, 1993. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1993/mullis-lecture.html
  2. Saiki R., Scharf S., Faloona F., Mullis K., Horn G., Erlich H., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia // Science. 1985. V. 230. P. 1350.
  3. Saiki R., Gelfand D., Stoffel S., Scharf S., Higuchi R., Horn G., Mullis K., Erlich H. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase // Science. 1988. V. 239. № 4839. P. 487.
  4. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3.
  5. Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR Analysis. Real-time Monitoring of DNA Amplification Reactions // Biotechnology. 1993. № 11. P. 1025.
  6. Goidin D., Mamessier A., Staquet M.J., Schmitt D., Berthier-Vergnes O. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations // Analyt. Biochem. 2001. V. 295. № 1. P. 17.
  7. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method // Methods. 2001. V. 25. № 4. P. 402.
  8. Gevertz J.L., Dunn S.M., Roth Ch.M. Mathematical Model of Real-Time PCR Kinetics // Biotechnol. Bioengineering. 2005. V. 92. № 3. P. 346.
  9. Cheng S., Fockler C., Barnes W.M., Higuchi R. Effective Amplification of Long Targets from Cloned Inserts and Human Genomic DNA // Proc. Natl. Acad. Sci. 1994. V. 91. № 12. P. 5695.
  10. Sharkey D.J., Scalice E.R., Christy K.G., Atwood S.M., Daiss J.L. Antibodies as Thermolabile Switches: High Temperature Triggering for the Polymerase Chain Reaction // Biotechnology. 1994. V. 12. № 5. P. 506.
  11. Flory P.J. Principles of Polymer Chemistry. Ithaca, New York: Cornell University Press, 1953. 688 p.
  12. Constales D., Yablonsky G.S., Xi Y., Marin G.B. Egalitarian Kinetic Models: Concepts and Results // Energies. 2021. V. 14. P. 7230.
  13. A Basic Polymerase Chain Reaction Protocol. Integrated DNA Technologies. https://demo.toplogic.in/demo_tulasi_live/uploded_files/pear/act_ZIDFgwrWpkJB4RRcgmFD.pdf
  14. PCR Protocol for Taq DNA Polymerase with Standard Taq Buffer (M0273). New England Biolabs, Inc. https://international.neb.com/protocols/0001/01/01/taq-dna-polymerase-with-standard-taq-buffer-m0273
  15. Chen F., Pan Y., Liao Ch., Zhou Q., Zhang X., Song Y., Bi Y. Complete Genome Sequence of Porcine Circovirus 2d Strain GDYX // J. Virol. 2012. V. 22. № 86. P. 12 457.
  16. McCutcheon J.P., McDonald B.R., Moran N.A. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont // PLoS Genetics. 2009. V. 5. № 7. P. 1.
  17. Xiao Ch., Rossmann M.G. Structures of giant icosahedral eukaryotic dsDNA viruses // Curr. Opin. Virol. 2011. V. 1. № 2. P. 101.
  18. Schneiker S., Perlova O., Kaiser O., Gerth K., Alici A., Altmeyer M.O., Bartels D., Bekel T., Beyer S., Bode E., Bode H.B., Bolten C.J., Choudhuri J.V., Doss S., Elnakady Y.A. et al. Complete genome sequence of the myxobacterium Sorangium cellulosum. // Nat. Biotechnol. 2007. V. 25. № 11. P. 1281.
  19. Быков В.И., Луковенков А.В., Варфоломеев С.Д. Кинетика элонгации ДНК. // Докл. АН. 2017. Т. 474. № 3. С. 370.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (163KB)
3.

Download (24KB)