Sverkhprovodyashchiy parametr poryadka soedineniya RbCa2Fe4As4F2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе исследован сверхпроводящий параметр порядка соединения RbCa2Fe4As4F2, относящегося к новому семейству 12442 железосодержащих сверхпроводников с критической температурой Tc ∼ 32K. Впервые методом спектроскопии многократных андреевских отражений обнаружено два сверхпроводящих конденсата с параметрами порядка ΔL ∼ 6.3 мэВ и ΔS ∼ 2.8 мэВ. Измерена температурная зависимость плотности сверхпроводящего критического тока Jc(T ) в собственном поле. В результате аппроксимации зависимости Jc(T ) выявлено соответствие экспериментальных данных c двухщелевой моделью c s-типом симметрии параметра порядка и щелями ΔL ∼ 6мэВ и ΔS ∼ 2мэВ. Полученные двумя различными методиками значения сверхпроводящего параметра находятся в хорошем согласии друг с другом.

About the authors

A. S Usol'tsev

Центр высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга, Физический институт им. П.Н.Лебедева РАН

Email: email@example.com
Москва, Россия

A. T Daniyarkhodzhaev

Центр высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга, Физический институт им. П.Н.Лебедева РАН

Москва, Россия

A. A Gippius

Центр высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга, Физический институт им. П.Н.Лебедева РАН

Москва, Россия

A. V Sadakov

Центр высокотемпературной сверхпроводимости и квантовых материалов им. В.Л. Гинзбурга, Физический институт им. П.Н.Лебедева РАН

Москва, Россия

References

  1. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006); https://doi.org/10.1021/ja063355c.
  2. X. Yi, M. Li, X. Xing, Y. Meng, C. Zhao, and Z. Shi, New J. Phys. 22, 073007 (2020); https://doi.org/10.1088/1367-2630/ab9427.
  3. I. I. Mazin, Nature 464, 183 (2010); https://doi.org/10.1038/nature08914.
  4. A.L. Ivanovskii, Phys.-Uspekhi 51, 1229 (2008); https://doi.org/10.1070/PU2008v051n12ABEH006703.
  5. M.V. Sadovskii, Phys.-Uspekhi 51 1201 (2008); https://doi.org/10.1070/PU2008v051n12ABEH006820.
  6. P. J. Hirschfeld, M.M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011); https://doi.org/10.1088/0034-4885/74/12/124508.
  7. K. Okazaki, Y. Ota, Y. Kotani et al. (Collaboration), Science 337, 1314 (2012); https://doi.org/10.1126/science.1222793.
  8. C.W. Hicks, T.M. Lippman, M. E. Huber, J.G. Analytis, J.H. Chu, A. S. Erickson, I.R. Fisher, and K.A. Moler, Phys. Rev. Lett. 103, 127003 (2009); https://doi.org/10.1103/PhysRevLett.103.127003.
  9. R. Thomale, C. Platt, W. Hanke, J. Hu, and B.A. Bernevig, Phys. Rev. Lett. 107, 117001 (2011); https://doi.org/10.1103/PhysRevLett.107.117001.
  10. J.Ph. Reid, M.A. Tanatar, A. Juneau-Fecteau, R.T. Gordon, S. Rene de Cotret, N. Doiron-Leyraud, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, R. Prozorov, and L. Taillefer, Phys. Rev. Lett. 109, 087001 (2012); https://doi.org/10.1103/PhysRevLett.109.087001.
  11. S. Maiti, M.M. Korshunov, T.A. Maier, P. J. Hirschfeld, and A.V. Chubukov, Phys. Rev. Lett. 107,147002 (2011); https://doi.org/10.1103/PhysRevLett.107.147002.
  12. W.R. Meier, T. Kong, U. S. Kaluarachchi et al. (Collaboration), Phys. Rev. B 102, 179904 (2020); https://doi.org/10.1103/PhysRevB.102.179904.
  13. T.K. Kim, K. S. Pervakov, D.V. Evtushinsky et al. (Collaboration), Phys. Rev. B 103, 174517 (2021); https://doi.org/10.1103/PhysRevB.103.174517.
  14. Z.C. Wang, C.Y. He, S.Q. Wu, Z.T. Tang, Y. Liu, A. Ablimit, C.M. Feng, and G.H. Cao, J. Am. Chem. Soc. 138, 7856 (2016); https://pubs.acs.org/doi/abs/10.1021/jacs.6b04538.
  15. N. S. Pavlov, K. S. Pervakov, and I.A. Nekrasov, Comput. Mat. Sci. 218, 111916 (2023); https://doi.org/10.1016/j.commatsci.2022.111916.
  16. T. Wang, J. Chu, H. Jin, J. Feng, L. Wang, Y. Song, C. Zhang, X. Xu,W. Li, Z. Li, T. Hu, D. Jiang,W. Peng, X. Liu, and G. Mu, J. Phys. Chem. C 123, 13925 (2019); https://doi.org/10.1021/acs.jpcc.9b04624.
  17. I.V. Zhuvagin, V.A. Vlasenko, A. S. Usoltsev, A.A. Gippius, K. S. Pervakov, A.R. Prishchepa, V.A. Prudkoglyad, S.Yu. Gavrilkin, A.D. Denishchenko, and A.V. Sadakov, JETP Lett. 120, 277 (2024); https://doi.org/10.1134/S0021364024602021.
  18. A. Ghosh, S. Ghosh, and H. Ghosh, Comput. Mat. Sci. 183, 109802 (2020); https://doi.org/10.1016/j.commatsci.2020.109802.
  19. M. Smidman, F.K.K. Kirschner, D.T. Adroja, A.D. Hillier, F. Lang, Z.C. Wang, G.H. Cao, and S. J. Blundell, Phys. Rev. B 97, 060509 (2018); https://doi.org/10.1103/PhysRevB.97.060509.
  20. F.K.K. Kirschner, D.T. Adroja, Z.C. Wang, F. Lang, M. Smidman, P. J. Baker, G.H. Cao, and S. J. Blundell, Phys. Rev. B 97, 060506(R) (2018); https://doi.org/10.1103/PhysRevB.97.060506.
  21. D.T. Adroja, F.K.K. Kirschner, F. Lang, M. Smidman, A.D. Hillier, Z.C. Wang, G.H. Cao, G.B.G. Stenning, and S. J. Blundell, J. Phys. Soc. Jpn. 87, 124705 (2018); https://doi.org/10.7566/JPSJ.87.124705.
  22. G. Ghigo, M. Fracasso, R. Gerbaldo, L. Gozzelino, F. Laviano, A. Napolitano, G.H. Cao, M. J. Graf, R. Prozorov, T. Tamegai, Z. Shi, X. Xing, and D. Torsello, Materials 15, 1079 (2022); https://doi.org/10.3390/ma15031079.
  23. D. Torsello, E. Piatti, M. Fracasso, R. Gerbaldo, L. Gozzelino, X. Yi, X. Xing, Z. Shi, D. Daghero, and G. Ghigo, Front. Phys. 11, 1336501 (2024); https://doi.org/10.3389/fphy.2023.1336501.
  24. D.T. Adroja, S. J. Blundell, F. Lang, H. Luo, Z.C. Wang, and G.H. Cao, J. Phys. Condens. Matter 32, 435603 (2020); https://doi.org/10.1088/1361-648X/aba28f.
  25. L. Takeuchi, Y. Yamakawa, and H. Kontani, Phys. Rev. B 98, 165143 (2018); https://doi.org/10.1103/PhysRevB.98.165143.
  26. Y.Y. Huang, Z.C. Wang, Y. J. Yu, J.M. Ni, Q. Li, E. J. Cheng, G.H. Cao, and S.Y. Li, Phys. Rev. B 99, 020502(R) (2019); https://doi.org/10.1103/PhysRevB.99.020502.
  27. D. Wu, W. Hong, C. Dong et al. (Collaboration), Phys. Rev. B 101, 224508 (2020); https://doi.org/10.1103/PhysRevB.101.224508.
  28. W. Hong, L. Song, B. Liu et al. (Collaboration), Phys. Rev. Lett. 125, 117002 (2020); https://doi.org/10.1103/PhysRevLett.125.117002.
  29. S. Chu and M.E.Mc Henry, J. Mater. Res. 13, 589 (1998); https://doi.org/10.1557/JMR.1998.0075.
  30. P.M. Shirage, K. Kihou, C.H. Lee, H. Kito, H. Eisaki, and A. Iyo, Appl. Phys. Lett. 97, 172506 (2010); https://doi.org/10.1063/1.3508957.
  31. T.M. Klapwijk, G. E. Blonder, and M. Tinkham, Physica B+C 109–110, 1657 (1982); https://doi.org/10.1016/0378-4363(82)90189-9.
  32. R. Taboryski, J. Kutchinsky, J.B. Hansen, M. Wildt, C. B. Sorensen, and P.E. Lindelof, Superlattices Microstruct. 25, 829 (1999); https://doi.org/10.1006/spmi.1999.0712.
  33. R. Kummel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990); https://doi.org/10.1103/PhysRevB.42.3992.
  34. T. P. Devereaux and P. Fulde, Phys. Rev. B 47, 14638(R) (1993); https://doi.org/10.1103/PhysRevB.47.14638.
  35. S.A. Kuzmichev and T. E. Kuzmicheva, Low Temp. Phys. 42, 1008 (2016); https://doi.org/10.1063/1.4971437.
  36. E. F. Talantsev and J. L. Tallon, Nat. Commun. 6, 7820 (2015); https://doi.org/10.1038/ncomms8820.
  37. E. Talantsev,W.P. Crump, and J. L. Tallon, Ann. Phys. 529, 1700197 (2017); https://doi.org/10.1002/andp.201700197.
  38. E. Talantsev, K. Iida, T. Ohmura, T. Matsumoto, W. Crump, N. Strickland, S. Wimbush, and H. Ikuta, Sci. Rep. 9, 14245 (2019); https://doi.org/10.1038/s41598-019-50687-y.
  39. E. F. Talantsev, W.P. Crump, J.G. Storey, and J. L. Tallon, Ann. Phys. 529, 1600390 (2017); https://doi.org/10.1002/andp.201600390.
  40. F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H.R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Phys. B 64, 175 (1986); https://doi.org/10.1007/BF01303700.
  41. A.V. Sadakov, A.A. Gippius, A.T. Daniyarkhodzhaev, A.V. Muratov, A.V. Kliushnik, O.A. Sobolevskiy, V.A. Vlasenko, A. I. Shilov, and K. S. Pervakov, JETP Lett. 119, 111 (2024); https://doi.org/10.1134/S0021364023603676.
  42. V.M. Pudalov, O.E. Omel’yanovskii, E. P. Khlybov et al. (Collaboration), Phys.-Uspekhi 54, 648 (2011); https://doi.org/10.3367/UFNe.0181.201106h.0672.
  43. D.A. Wollman, D. J. van Harlingen, W.C. Lee, D.M. Ginsberg, and A. J. Leggett, Phys. Rev. Lett. 71, 2134 (1993); https://doi.org/10.1103/PhysRevLett.71.2134.
  44. D.A. Wollman, D. J. van Harlingen, J. Giapintzakis, and D.M. Ginsberg, Phys. Rev. Lett. 74, 797 (1995); https://doi.org/10.1103/PhysRevLett.74.797.
  45. D. J. van Harlingen, Rev. Mod. Phys. 67, 515 (1995); https://doi.org/10.1103/RevModPhys.67.515.
  46. R. Khasanov and Z. Guguchia, Supercond. Sci. Technol. 28, 034003 (2015); https://doi.org/10.1088/09532048/28/3/034003.
  47. A.V. Muratov, A.V. Sadakov, S.Yu. Gavrilkin, A.R. Prishchepa, G. S. Epifanova, D.A. Chareev, and V.M. Pudalov, Physica B 536, 785 (2018); https://doi.org/10.1016/j.physb.2017.10.041.
  48. M. Abdel-Hafiez, P. J.Pereira, S.A. Kuzmichev, T. E. Kuzmicheva, V.M. Pudalov, L. Harnagea, A.A. Kordyuk, A.V. Silhanek, V.V. Moshchalkov, B. Shen, H.H Wen, A.N. Vasiliev, and X. J. Chen, Phys. Rev. B 90, 054524 (2014); https://doi.org/10.1103/PhysRevB.90.054524.
  49. T. E. Shanygina, Ya.G. Ponomarev, S.A. Kuzmichev, M.G. Mikheev, S.N. Tchesnokov, O.E. Omel’yanovskii, A.V. Sadakov, Yu.F. Eltsev, A. S. Dormidontov, V.M. Pudalov, A. S. Usol’tsev, and E.P. Khlybov, JETP Lett. 93, 94 (2011); https://doi.org/10.1134/S0021364011020111.
  50. K. Iida, Y. Nagai, S. Ishida et al. (Collaboration), Phys. Rev. B 100, 014506 (2019); https://doi.org/10.1103/PhysRevB.100.014506.
  51. W. Duan, K. Chen, W. Hong, X. Chen, H. Yang, S. Li, H. Luo, and H.H. Wen, Phys. Rev. B 103, 214518 (2021); https://doi.org/10.1103/PhysRevB.103.214518.
  52. D. Torsello, E. Piatti, G.A. Ummarino, X. Yi, X. Xing, Z. Shi, G. Ghigo, and D. Daghero, npj Quantum Mater. 7, 10 (2022); https://doi.org/10.1038/s41535021-00419-1.
  53. B. Xu, Z.C. Wang, E. Sheveleva, F. Lyzwa, P. Marsik, G.H. Cao, and C. Bernhard, Phys. Rev. B 99, 125119 (2019); https://doi.org/10.1103/PhysRevB.99.125119.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук