Soft mode behavior in transition metal doped SrTiO3 thin films on MgO substrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ferroelectric soft mode in polycrystalline pristine SrTiO3 and weakly doped SrTiO3:M (M=2 at% Fe, Ni, Mn, Co) thin films on (001) MgO substrates has been studied using time-domain terahertz spectroscopy. Spectra of real and imaginary parts of film permittivity were determined in the frequency range of 5–100 cm−1 at temperatures between 5 and 300K. Central frequency and dielectric contribution of the ferroelectric soft mode show Barrett-like temperature dependencies similar to crystalline SrTiO3. Large negative values of Curie temperature and enhanced positive values of Barrett quantum temperatures are discovered indicating that doped SrTiO3 thin films are farther from ferroelectric phase transition than SrTiO3 crystals.

About the authors

A. V Melentev

Moscow Institute of Physics and Technology

Author for correspondence.
Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia

E. S. Zhukova

Moscow Institute of Physics and Technology

Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia

B. M Nekrasov

Moscow Institute of Physics and Technology

Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia

V. S. Stolyarov

Moscow Institute of Physics and Technology; Dukhov Research Institute of Automatics (VNIIA); National University of Science and Technology MISIS

Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia; Moscow, Russia; Moscow, Russia

A. S. Frolov

Moscow Institute of Physics and Technology

Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia

M. Savinov

Institute of Physics of the Czech Academy of Sciences

Email: aleksandr.melentyev@phystech.edu
Czech Republic

A. A Bush

Research Institute of Solid-State Electronics Materials, MIREA – Russian Technological University (RTU MIREA)

Email: aleksandr.melentyev@phystech.edu
Moscow, Russia

V. I. Kozlov

Research Institute of Solid-State Electronics Materials, MIREA – Russian Technological University (RTU MIREA); Kapitza Institute for Physical Problems of the Russian Academy of Sciences

Email: aleksandr.melentyev@phystech.edu
Moscow, Russia; Moscow, Russia

B. P Gorshunov

Moscow Institute of Physics and Technology

Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia

M. V Talanov

Moscow Institute of Physics and Technology

Email: aleksandr.melentyev@phystech.edu
Dolgoprudny, Russia

References

  1. J.H. Barrett, Phys. Rev. 86, 118 (1952).
  2. J. Petzelt, T. Ostapchuk, I. Gregora et al. (Collaboration), Phys. Rev. B 64, 184111 (2001).
  3. T. Ostapchuk, J. Petzelt, V. ˇZelezny et al. (Collaboration), Phys. Rev. B 66, 235406 (2002).
  4. J. Petzelt, T. Ostapchuk, I. Gregora, M. Savinov, D. Chvostova, J. Liu, and Z. Shen, J. Eur. Ceram. Soc. 26, 2855 (2006).
  5. M.V. Talanov, A. I. Stash, S.A. Ivanov, E. S. Zhukova, B. P. Gorshunov, B.M. Nekrasov, V. Stolyarov, V. Kozlov, M. Savinov, and A. Bush, J. Phys. Chem. Lett. 13, 11720 (2022).
  6. A. Tkach, P.M. Vilarinho, and A. Kholkin, Ferroelectrics 304, 87 (2004).
  7. M. Savinov, V.A. Trepakov, P.P. Syrnikov, V. ˇZelezny, J. Pokorny, A. Dejneka, L. Jastrabik, and P. Galinetto, J. Phys. Condens. Matter 20, 095221 (2008).
  8. A. Tkach, P.M. Vilarinho, A.L. Kholkin, A. Pashkin, S. Veljko, and J. Petzelt, Phys. Rev. B 73, 104113 (2006).
  9. S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic, and D.M. Popovic, Chin. Phys. B 23, 026102 (2013).
  10. S. Kojima, 2022 Photonics & Electromagnetics Research Symposium (PIERS), IEEE, Hangzhou, China (2022).
  11. J. Petzelt and S. Kamba, Ferroelectrics 503, 19 (2016).
  12. I. Katayama, H. Shimosato, M. Ashida, I. Kawayama, M. Tonouchi, and T. Itoh, J. Lumin. 128, 998 (2008).
  13. E. S. Zhukova, B.M. Nekrasov, M. Tyunina et al. (Collaboration), J. Alloys Compd. 976, 173255 (2024).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук