Crossover from relativistic to non-relativistic net magnetization for MnTe altermagnet candidate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We experimentally study magnetization reversal curves for MnTe single crystals, which is the altermagnetic candidate. Above 85 K temperature, we confirm the antiferromagnetic behavior of magnetization M, which is known for α-MnTe. Below 85 K, we observe anomalous low-field magnetization behavior, which is accompanied by the sophisticated M(α) angle dependence with beating pattern as the interplay between M(α) maxima and minima: in low fields, M(α) shows ferromagnetic-like 180° periodicity, while at high magnetic fields, the periodicity is changed to the 90° one. This angle dependence is the most striking result of our experiment, while it can not be expected for standard magnetic systems. In contrast, in altermagnets, symmetry allows ferromagnetic behavior only due to the spin-orbit coupling. Thus, we claim that our experiment shows the effect of weak spin-orbit coupling in MnTe, with crossover from relativistic to non-relativistic net magnetization, and, therefore, we experimentally confirm altermagnetism in MnTe.

About the authors

N. N Orlova

Institute of Solid State Physics of the Russian Academy of Sciences

Author for correspondence.
Email: honna@issp.ac.ru
Chernogolovka, Russia

A. A Avakyants

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

A. V Timonina

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

N. N Kolesnikov

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

E. V Deviatov

Institute of Solid State Physics of the Russian Academy of Sciences

Email: honna@issp.ac.ru
Chernogolovka, Russia

References

  1. L. Smejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12, 031042 (2022).
  2. I. Mazin, Phys. Rev. X 12, 040002 (2022); 10.1103/PhysRevX.12.040002.
  3. J. A. Ouassou, A. Brataas, and J. Linder, Phys. Rev. Lett. 131, 076003 (2023); https://doi.org/10.1103/PhysRevLett.131.076003.
  4. I. I. Mazin, arxiv:2203.05000.
  5. S. Das, Dh. Suri, and A. Soori, J. Phys. : Condens. Matter 35, 435302 (2023); https://doi.org/10.1088/1361-648X/acea12.
  6. R. D. Gonzalez Betancourt, J. Zubac, R. Gonzalez-Hernandez, K. Geishendorf, Z. Soban, G. Springholz, K. Olejnik, L. Smejkal, J. Sinova, T. Jungwirth, S. T. B. Goennenwein, A. Thomas, H. Reichlova, J. Zelezny, and D. Kriegner, Phys. Rev. Lett. 130, 036702 (2023).
  7. L. Smejkal, R. Gonzalez-Hernandez, T. Jungwirth, and J. Sinova, Sci. Adv. 6, eaaz8809 (2020).
  8. S. Hayami and H. Kusunose, Phys. Rev. B 103, L180407 (2021).
  9. K. P. Kluczyk, K. Gas, M. J. Grzybowski, P. Skupinski, M. A. Borysiewicz, T. Fas, J. Suffczynski, J.Z. Domagala, K. Grasza, A. Mycielski, M. Baj, K. H. Ahn, K. Výborný, M. Sawicki, and M. Gryglas-Borysiewicz, arXiv:2310.09134.
  10. I. I. Mazin, Phys. Rev. B 107, L100418 (2023).
  11. S.-W. Cheong and F.-T. Huang, npj Quantum Mater. 9, 13 (2024); https://doi.org/10.1038/s41535-024-00626-6; arxiv: 2401.13069.
  12. M. Hajlaoui, S. W. D’Souza, L. Smejkal et al. (Collaboration), arXiv:2401.09187.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук