Interplay Between Electron Correlations, Magnetic State, and Structural Confinement in LaNiO3 Ultrathin Films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We report a theoretical study of the effects of electron correlations and structural confinement on the electronic properties and magnetic state of LaNiO3 (LNO) thin films epitaxially deposited on the (001)">(001) LaAlO3 (LAO) substrate. Using the DFT + U method we compute the electronic band structure, magnetic properties, and phase stability of the 1.5 unit-cell-thick NiO2-terminated LNO thin films. Our results reveal complex diversity of the electronic states caused by the effects of structural confinement, interfacial charge transfer and electronic correlations. Our calculations suggest the appearance of in-plane (110) charge disproportionation of the Ni ions in the interface NiO2 layer of the antiferromagnetically ordered LNO thin films. Moreover, the electronic states of both the antiferromagnetic and ferromagnetic LNO/LAO show a large orbital polarization of the Ni ions in the surface NiO2 layers. Our results suggest the crucial importance of oxygen defects to explain the metal-to-insulator phase transition experimentally observed in a few-unit-cell-thick LNO/LAO thin films.

About the authors

N. O. Vambol'd

Institute of Physics and Technology, Ural Federal University

Email: nikitavamb@gmail.com
620002, Yekaterinburg, Russia

G. A. Sazhaev

Institute of Physics and Technology, Ural Federal University

Email: nikitavamb@gmail.com
620002, Yekaterinburg, Russia

I. V. Leonov

Institute of Physics and Technology, Ural Federal University;Mikheev Institute of Metal Physics, Russian Academy of Sciences

Author for correspondence.
Email: nikitavamb@gmail.com
620002, Yekaterinburg, Russia;620108, Yekaterinburg, Russia

References

  1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
  2. D. Khomskii, Transition Metal Compounds, Cambridge University Press, Cambridge (2014).
  3. G. Catalan, Phase Transit. 81, 729 (2008).
  4. J.B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B 45, 8209 (1992).
  5. J. L. Garc'ia-Mu˜noz, J. Rodr'iguez-Carvajal, P. Lacorre, and J. B. Torrance, Phys. Rev. B 46, 4414 (1992).
  6. A.V. Boris, Y. Matiks, E. Benckiser et al. (Collaboration), Science 332, 937 (2011).
  7. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
  8. S. Middey, J. Chakhalian, P. Mahadevan, J.W. Freeland, A. J. Millis, and D.D. Sarma, Annu. Rev. Mater. Res. 46, 305 (2016).
  9. P.D.C. King, H. I. Wei, Y.F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Boˇzovi'c, D.G. Schlom, and K.M. Shen, Nat. Nanotechnol. 9, 443 (2014).
  10. H. Chen and A. Millis, J. Phys.: Condens. Matter 29, 243001 (2017).
  11. S. Catalano, M. Gibert, J. Fowlie, J. 'Iniguez, J.-M. Triscone, and J. Kreisel, Rep. Prog. Phys. 81, 046501 (2018).
  12. M. Golalikhani, Q. Lei, R.U. Chandrasena et al. (Collaboration), Nat. Commun. 9, 2206 (2018).
  13. R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, and J.M. Triscone, Phys. Rev. Lett. 106, 246403 (2011).
  14. E. J. Moon, B.A. Gray, M. Kareev et al. (Collaboration), New J. Phys. 13, 073037 (2011).
  15. M. Wu, E. Benckiser, M.W. Haverkort et al. (Collaboration), Phys. Rev. B 88, 125124 (2013).
  16. J. Fowlie, M. Gibert, G. Tieri, A. Gloter, J. 'I niguez, A. Filippetti, S. Catalano, S. Gariglio, A. Schober, M. Guennou, J. Kreisel, O. St'e phan, and J. Triscone, Adv. Mater. 29, 1605197 (2017).
  17. M. Hepting, R. J. Green, Z. Zhong et al. (Collaboration), Nat. Phys. 14, 1097 (2018).
  18. I. Ardizzone, M. Zingl, J. Teyssier, H.U.R. Strand, O. Peil, J. Fowlie, A.B. Georgescu, S. Catalano, N. Bachar, A.B. Kuzmenko, M. Gibert, J.-M. Triscone, A. Georges, and D. van der Marel, Phys. Rev. B 102, 155148 (2020).
  19. Q. Guo, S. Farokhipoor, C. Mag'en, F. Rivadulla, and B. Noheda, Nat. Commun. 11, 2949 (2020).
  20. P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O.K. Andersen, and K. Held, Phys. Rev. Lett. 103, 016401 (2009).
  21. A. Blanca-Romero and R. Pentcheva, Phys. Rev. B 84, 195450 (2011).
  22. D. Doennig, W.E. Pickett, and R. Pentcheva, Phys. Rev. B 89, 121110(R) (2014).
  23. S. Middey, D. Meyers, D. Doennig, M. Kareev, X. Liu, Y. Cao, Zh. Yang, J. Shi, L. Gu, P. J. Ryan, R. Pentcheva, J.W. Freeland, and J. Chakhalian, Phys. Rev. Lett. 116, 056801 (2016).
  24. B. Geisler, A. Blanca-Romero, and R. Pentcheva, Phys. Rev. B 95, 125301 (2017).
  25. B. Geisler and R. Pentcheva, Phys. Rev. Materials 2, 055403 (2018).
  26. B. Geisler and R. Pentcheva, Phys. Rev. B 102, 020502(R) (2020).
  27. B. Geisler, S. Follmann, and R. Pentcheva, Phys. Rev. B 106, 155139 (2022).
  28. B. Lau and A. J. Millis, Phys. Rev. Lett. 110, 126404 (2013).
  29. H. Lau, A. J. Millis, and C.A. Marianetti, Phys. Rev. B 93, 235109 (2016).
  30. X. Liao and H. Park, Phys. Rev. Mater. 7, 015002 (2023).
  31. O.E. Lau, M. Ferrero, and A. Georges, Phys. Rev. B 90, 045128 (2014).
  32. A.B. Georgescu, O.E. Peil, A. S. Disa, A. Georges, and A. J. Millis, Proc. Natl. Acad. Sci. 116, 14434 (2019).
  33. J. Ruppen, J. Teyssier, O.E. Peil, S. Catalano, M. Gibert, J. Mravlje, J.-M. Triscone, A. Georges, and D. van der Marel, Phys. Rev. B 92, 155145 (2015).
  34. V. Bisogni, S. Catalano, R. J. Green, M. Gibert, R. Scherwitzl, Y. Huang, V.N. Strocov, P. Zubko, S. Balandeh, J.-M. Triscone, G. Sawatzky, and T. Schmitt, Nat. Commun. 7, 13017 (2016).
  35. H. Guo, Z.W. Li, L. Zhao, Z. Hu, C. F. Chang, C.-Y. Kuo, W. Schmidt, A. Piovano, T.W. Pi, O. Sobolev, D. I. Khomskii, L.H. Tjeng, and A.C. Komarek, Nat. Commun. 9, 43 (2018).
  36. H. Park, A. J. Millis, and C.A. Marianetti, Phys. Rev. Lett. 109, 156402 (2012).
  37. A. Subedi, O.E. Peil, and A. Georges, Phys. Rev. B 91, 075128 (2015).
  38. P. Seth, O.E. Peil, L. Pourovskii, M. Betzinger, C. Friedrich, O. Parcollet, S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. B 96, 205139 (2017).
  39. A. Hampel and C. Ederer, Phys. Rev. B 96, 165130 (2017).
  40. O.E. Peil, A. Hampel, C. Ederer, and A. Georges, Phys. Rev. B 99, 245127 (2019).
  41. A. Hampel, P. Liu, C. Franchini, and C. Ederer, npj Quant. Mater. 4, 5 (2019).
  42. K. Haule and G. L. Pascut, Sci. Rep. 7, 10375 (2017).
  43. X. Liau, V. Singh, and H. Park, Phys. Rev. B 103, 085110 (2021).
  44. I. I. Mazin, D. I. Khomskii, R. Lengsdorf, J.A. Alonso, W.G. Marshall, R.M. Ibberson, A. Podlesnyak, M. J. Mart'i nez-Lope, and M.M. Abd-Elmeguid, Phys. Rev. Lett. 98, 176406 (2007).
  45. S. Johnston, A. Mukherjee, I. Elfimov, M. Berciu, and G.A. Sawatzky, Phys. Rev. Lett. 112, 106404 (2014).
  46. M. Azuma, S. Carlsson, J. Rodgers, M.G. Tucker, M. Tsujimoto, S. Ishiwata, S. Isoda, Y. Shimakawa, M. Takano, and J.P. Attfield, J. Am. Chem. Soc. 129, 14433 (2007).
  47. I. Leonov, A. S. Belozerov, and S. L. Skornyakov, Phys. Rev. B 100, 161112(R) (2019).
  48. D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, and H.Y. Hwang, Nature (London) 572, 624 (2019).
  49. M. Rossi, M. Osada, J. Choi et al. (Collaboration), Nat. Phys. 18, 869 (2022).
  50. C.C. Tam, J. Choi, X. Ding, S. Agrestini, A. Nag, M. Wu, B. Huang, H. Luo, P. Gao, M. Garc'ıa-Fern'andez, L. Qiao, and K.-J. Zhou, Nat. Mater. 21, 1116 (2022).
  51. G. Krieger, L. Martinelli, S. Zeng, L. E. Chow, K. Kummer, R. Arpaia, M. Moretti Sala, N.B. Brookes, A. Ariando, N. Viart, M. Salluzzo, G. Ghiringhelli, and D. Preziosi, Phys. Rev. Lett. 129, 027002 (2022).
  52. I. Leonov, S. L. Skornyakov, and S.Y. Savrasov, Phys. Rev. B 101, 241108(R) (2020).
  53. F. Lechermann, Phys. Rev. X 10, 041002 (2020).
  54. J. Karp, A. S. Botana, M.R. Norman, H. Park, M. Zingl, and A. Millis, Phys. Rev. X 10, 021061 (2020).
  55. J. Karp, A. Hampel, Ma. Zingl, A. S. Botana, H. Park, M.R. Norman, and A. J. Millis, Phys. Rev. B 102, 245130 (2020).
  56. I. Leonov, J. Alloys Compd. 883, 160888 (2021).
  57. A. S. Botana, F. Bernardini, and A. Cano, JETP 159, 711 (2021).
  58. K.G. Slobodchikov and I.V. Leonov, Phys. Rev. B 106, 165110 (2022).
  59. A. Kreisel, B.M. Andersen, A.T. Rømer, I.M. Eremin, and F. Lechermann, Phys. Rev. Lett. 129, 077002 (2022).
  60. M.A. Vysotin, I.A. Tarasov, A. S. Fedorov, S.N. Varnakov, and S.G. Ovchinnikov, Pis'ma v ZhETF 116, 318 (2022).
  61. V. I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).
  62. S. L. Dudarev, G.A. Botton, S.Y. Savrasov, C. J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).
  63. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  64. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
  65. P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), J. Phys.: Condens. Matter 21, 395502 (2009).
  66. L. Bengtsson, Phys. Rev. B 59, 12301 (1999).
  67. J. P. Attfield, Solid State Sciences 8 861 (2006).
  68. G.M. Dalpian, Q. Liu, J. Varignon, M. Bibes, and A. Zunger, Phys. Rev. B 98, 075135 (2018).
  69. N.B. Ivanova, S.G. Ovchinnikov, M.M. Korshunov, I.M. Eremin, and N.V. Kazak, Phys.-Uspekhi 52, 789 (2009).
  70. E. Greenberg, I. Leonov, S. Layek, Z. Konopkova, M. P. Pasternak, L. Dubrovinsky, R. Jeanloz, I.A. Abrikosov, and G.Kh. Rozenberg, Phys. Rev. X 8, 031059 (2018).
  71. S. Layek, E. Greenberg, S. Chariton, M. Bykov, E. Bykova, D.M. Trots, A.V. Kurnosov, I. Chuvashova, S.V. Ovsyannikov, I. Leonov, and G.Kh. Rozenberg, J. Am. Chem. Soc. 144, 10259 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук