Generation of Intense Few-Cycle Terahertz Radiation in Organic Crystals Pumped by 1.24-μm Multigigawatt Chirped Laser Pulses
- Authors: Rumyantsev B.V1, Pushkin A.V1, Suleymanova D.Z1, Zhidovtsev N.A1, Potemkin F.V1
-
Affiliations:
- Faculty of Physics, Moscow State University, 119991, Moscow, Russia
- Issue: Vol 117, No 7-8 (4) (2023)
- Pages: 571-579
- Section: Articles
- URL: https://rjraap.com/0370-274X/article/view/664134
- DOI: https://doi.org/10.31857/S1234567823080025
- EDN: https://elibrary.ru/VOPYYE
- ID: 664134
Cite item
Abstract
It has been shown that the spectrum of intense few-cycle terahertz radiation generated in a DAST organic crystal can be controlled by chirping 1.24-μm pump femtosecond laser radiation of a chromium forsterite laser system. It has been found that an increase in the linear chirp of generating radiation results in the narrowing of the spectrum of terahertz radiation and its redshift. The simulation of the generation of terahertz radiation within the model of three-wave mixing has shown that this effect is due to a change in the phase matching width of the degenerate generation of the difference frequency of terahertz range. In addition, the comparative analysis of terahertz radiation spectra generated in DAST, DSTMS, OH1, and BNA organic crystals indicates that the spectral–temporal properties of terahertz radiation can be more roughly controlled by choosing an appropriate crystal. The proposed approach to control the terahertz radiation spectrum by chirping the pump pulse provides the foundation for spectroscopic studies using intense terahertz radiation with controlled spectral–temporal properties.
About the authors
B. V Rumyantsev
Faculty of Physics, Moscow State University, 119991, Moscow, Russia
Email: potemkin@physics.msu.ru
A. V Pushkin
Faculty of Physics, Moscow State University, 119991, Moscow, Russia
Email: potemkin@physics.msu.ru
D. Z Suleymanova
Faculty of Physics, Moscow State University, 119991, Moscow, Russia
Email: potemkin@physics.msu.ru
N. A Zhidovtsev
Faculty of Physics, Moscow State University, 119991, Moscow, Russia
Email: potemkin@physics.msu.ru
F. V Potemkin
Faculty of Physics, Moscow State University, 119991, Moscow, Russia
Author for correspondence.
Email: potemkin@physics.msu.ru
References
- C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, Opt. Lett. 39(23), 6632 (2014).
- X. Ch. Zhang, A. Shkurinov, and Y. Zhang, Nat. Photonics 11(1), 16 (2017).
- Sh. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, Phys. Rev. Lett. 107(16), 163603 (2011).
- D. Afanasiev, J. R. Hortensius, B. A. Ivanov, A. Sasani, E. Bousquet, Y. M. Blanter, R. V. Mikhaylovskiy, A. V. Kimel, and A. D. Caviglia, Nat. Mater. 20(5), 607 (2021).
- T. L. Cocker, V. Jelic, R. Hillenbrand, and F. A. Hegmann, Nat. Photonics 15(8), 558 (2021).
- M. Plankl, P. E. Faria Junior, F. Mooshammer, T. Siday, M. Zizlsperger, F. Sandner, F. Schiegl, S. Maier, M. A. Huber, M. Gmitra, J. Fabian, J. L. Boland, T. L. Cocker, and R. Huber, Nat. Photonics 15(8), 594 (2021).
- E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. K¨artner, Nat.Commun. 6(1), 8486 (2015).
- H. Tang, L. Zhao, P. Zhu, X. Zou, J. Qi, Y. Cheng, J. Qiu, X. Hu, W. Song, D. Xiang, and J. Zhang, Phys. Rev. Lett. 127(7), 074801 (2021).
- I. V. Il'ina, D. S. Sitnikov, and M. B. Agranat, High Temperature 56, 789 (2018).
- O. V. Chefonov, A. V. Ovchinnikov, S. A. Romashevskiy, X. Chai, T. Ozaki, A. B. Savel'ev, M. B. Agranat, and V. E. Fortov, Opt. Lett. 42(23), 4889 (2017).
- V. Jelic, K. Iwaszczuk, P. H. Nguyen, Ch. Rathje, G. J. Hornig, H. M. Sharum, J. R. Ho man, M. R. Freeman, and F. A. Hegmann, Nat. Phys. 13(6), 591 (2017).
- C. Vicario, M. Jazbinsek, A.V. Ovchinnikov, O. V. Chefonov, S. I. Ashitkov, M. B. Agranat, and C. P. Hauri, Opt. Express 23(4), 4573 (2015).
- M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguere, A. Lotti, A. Couairon, F. L'egar'e, T. Ozaki, D. Faccio, and R. Morandotti, Phys. Rev. Lett. 110(25), 253901 (2013).
- V. Y. Fedorov and S. Tzortzakis, Phys. Rev. A 97(6), 063842 (2018).
- K. Shibuya, K. Nawata, Y. Nakajima, Y. Fu, E. J. Takahashi, K. Midorikawa, T. Yasui, and H. Minamide, Appl. Phys. Express 14(9), 092004 (2021).
- C. Gollner, M. Shalaby, C. Brodeur, I. Astrauskas, R. Jutas, E. Constable, L. Bergen, A. Baltuˇska, and A. Pugˇzlys, APL Photonics 6(4), 046105 (2021).
- J. Li, R. Rana, L. Zhu, C. Liu, H. Schneider, and A. Pashkin, Opt. Express 29(14), 22494 (2021).
- T. Hattori and K. Takeuchi, Opt. Express 15(13), 8076 (2007).
- K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. K¨artner, Opt. Express 22(17), 20239 (2014).
- A. Schneider, M. Neis, M. Stillhart, B.Ruiz, R. U. A. Khan, and P. Gu¨nter, JOSA B 23(9), 1822 (2006).
- Ch. Bosshard, R. Spreiter, L. Degiorgi, and P. Gu¨nter, Phys. Rev. B 66(20), 205107 (2002).
- P. D. Cunningham and L. M. Hayden, Opt. Express 18(23), 23620 (2010).
- M. Stillhart, A. Schneider, and P. Gu¨nter, JOSA B 25(11), 1914 (2008).
- E. A. Migal, D. Z. Suleimanova, and F. V. Potemkin, Quantum Electron. 51(7), 601 (2021).
- H. Zhao, Y. Tan, T. Wu, G. Steinfeld, Y. Zhang, C. Zhang, L. Zhang, and M. Shalaby, Appl. Phys. Lett. 114(24), 241101 (2019).
- J. M. Khosro an and B. A. Garetz, Appl. Opt. 22(21), 3406 (1983).
- E. A. Migal, F. V. Potemkin, and V. M. Gordienko, Laser Phys. Lett. 16(4), 045401 (2019).
- E. A. Migal, S. Yu. Stremoukhov, and F. V. Potemkin, Phys. Rev. A 101(2), 021401 (2020).
- E. Migal, A. Pushkin, N. Minaev, B. Bravy, and F. Potemkin, Opt. Lett. 47(4), 985 (2022).
- B. V.Rumiantsev, K. E. Mikheev, A. V. Pushkin, E. A. Migal, S. Yu. Stremoukhov, and F. V. Potemkin, JETP Lett. 115(7), 390 (2022).
- B. V.Rumiantsev, A. V. Pushkin, K E. Mikheev, and F. V. Potemkin, JETP Lett. 116(10), 683 (2022).
Supplementary files
