Determination of the Most Important Parameters of a Metal Irradiated by an Ultrashort Laser Pulse

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ultrashort laser pulses with a duration from several to about a thousand optical cycles have significant importance in modern science and engineering. Such a pulse transfers a metal to an excited two-temperature state with hot electrons where the temperature of the electron subsystem Te is much higher than the temperature of the ion subsystem Ti. The thermal conductivity in such systems differs from well-known reference values. The thermal conductivity κ and the energy exchange rate between the electron and ion subsystems α are the key parameters of the two-temperature model, which are still poorly studied, although studies of these parameters, particularly α, are numerous. New theoretical and experimental results that make it possible to determine the parameters κ and α for gold have been reported in this work

About the authors

N. A Inogamov

Landau Institute for Theoretical Physics, Russian Academy of Sciences; Dukhov All-Russia Research Institute of Automatics; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: nailinogamov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 127055, Moscow, Russia; 125412, Moscow, Russia

V. A Khokhlov

Landau Institute for Theoretical Physics, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: nailinogamov@gmail.com
142432, Chernogolovka, Moscow region, Russia; 125412, Moscow, Russia

S. A Romashevskiy

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: nailinogamov@gmail.com
125412, Moscow, Russia

Yu. V Petrov

Landau Institute for Theoretical Physics, Russian Academy of Sciences

Email: nailinogamov@gmail.com
142432, Chernogolovka, Moscow region, Russia

V. V Zhakhovskiy

Dukhov All-Russia Research Institute of Automatics; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: nailinogamov@gmail.com
127055, Moscow, Russia; 125412, Moscow, Russia

S. I Ashitkov

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: nailinogamov@gmail.com
125412, Moscow, Russia

References

  1. V.V. Temnov, C. Klieber, K.A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, Nat. Commun. 4, 1468 (2013).
  2. X.W. Wang, A.A. Kuchmizhak, X. Li, S. Juodkazis, O.B. Vitrik, Yu.N. Kulchin, V.V. Zhakhovsky, P.A. Danilov, A.A. Ionin, S. I. Kudryashov, A.A. Rudenko, and N.A. Inogamov, Phys. Rev. Appl. 8(4), 044016 (2017).
  3. R. Fang, A. Vorobyev, and Ch. Guo, Light Sci. Appl. 6, e16256 (2017).
  4. I.N. Saraeva, S. I. Kudryashov, A.A. Rudenko, M. I. Zhilnikova, D. S. Ivanov, D.A. Zayarny, A.V. Simakin, A.A. Ionin, and M. E. Garcia, Appl. Surf. Sci. 470, 1018 (2019).
  5. N.A. Smirnov, S. I. Kudryashov, A.A. Rudenko, A.A. Nastulyavichus, and A.A. Ionin, Laser Phys. Lett. 19(2), 026001 (2022).
  6. V.V. Shepelev, Yu.V. Petrov, N.A. Inogamov, V.V. Zhakhovsky, E.A. Perov, and S.V. Fortova, Optics and Laser Technology 152, 108100 (2022).
  7. N.A. Inogamov, V.V. Zhakhovskii, and V.A. Khokhlov, JETP 127(1), 79 (2018).
  8. M. I. Kaganov, I.M. Lifshitz, and L.V. Tanatarov, Sov. Phys. JETP 4(2), 173 (1957).
  9. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Sov. Phys. JETP 39(2), 375 (1974).
  10. Zh. Lin, L.V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).
  11. S.D. Brorson, J.G. Fujimoto, and E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987).
  12. S.D. Brorson, A. Kazeroonian, J. S. Moodera, D.W. Face, T.K. Cheng, E.P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990).
  13. T. Juhasz, H.E. Elsayed-Ali, G.O. Smith, C. Su'arez, and W.E. Bron, Phys. Rev. B 48, 15488 (1993).
  14. S.-S. Wellershoff, J. Hohlfeld, J. Guedde, and E. Matthias, Appl. Phys. A 69 (Suppl 1), S99 (1999).
  15. B. J. Siwick, J.R. Dwyer, R.E. Jordan, and R. J.D. Miller, Science 302(5649), 1382 (2003).
  16. R. Ernstorfer, M. Harb, Ch.T. Hebeisen, G. Sciaini, Th. Dartigalongue, and R. J.D. Miller, Science 323(5917), 1033 (2009).
  17. J. Chen, W.-K. Chen, J. Tang, and P.M. Rentzepis, Proceedings of the National Academy of Sciences 108(47), 18887 (2011).
  18. K. Widmann, T. Ao, M.E. Foord, D. F. Price, A.D. Ellis, P.T. Springer, and A. Ng, Phys. Rev. Lett. 92(12), 125002 (2004).
  19. Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, Phys. Rev. Lett. 96, 255003 (2006).
  20. T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P.T. Springer, and A. Ng, Phys. Rev. Lett. 96, 055001 (2006).
  21. Y. Ping, D. Hanson, I. Koslow, T. Ogitsu, D. Prendergast, E. Schwegler, G. Collins, and A. Ng, Phys. Plasmas 15, 056303 (2008).
  22. Z. Chen, B. Holst, S.E. Kirkwood, V. Sametoglu, M. Reid, Y.Y. Tsui, V. Recoules, and A. Ng, Phys. Rev. Lett. 110, 135001 (2013).
  23. S. I. Ashitkov, P. S. Komarov, V.V. Zhakhovsky, Yu.V. Petrov, V.A. Khokhlov, A.A. Yurkevich, D.K. Ilnitsky, N.A. Inogamov, and M.B. Agranat, J. Phys.: Conf. Ser. 774(1), 012097 (2016).
  24. K. Sokolowski-Tinten, Ch. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Foerster, M. Kammler, M.H. von Hoegen, and D. von der Linde, Nature 422, 287 (2003).
  25. D. S. Ivanov and L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003).
  26. N.A. Inogamov, V.V. Zhakhovskii, S. I. Ashitkov, V.A. Khokhlov, Yu.V. Petrov, P. S. Komarov, M. B. Agranat, S. I. Anisimov, and K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009).
  27. L.V. Zhigilei, Zh. Lin, and D. S. Ivanov, J. Phys. Chem. C 113(27), 11892 (2009).
  28. V.V. Zhakhovskii, K. Nishihara, S. I. Anisimov, and N.A. Inogamov, JETP Lett. 71(4), 167 (2000).
  29. A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, and H.M. Urbassek, Phys. Rev. B 78, 045437 (2008).
  30. N. Medvedev and I. Milov, Phys. Rev. B 102, 064302 (2020).
  31. N. Medvedev and I. Milov, Eur. Phys. J. D 75, 212 (2021).
  32. F. Akhmetov, N. Medvedev, I. Makhotkin, M. Ackermann, and I. Milov, Materials 15(15), 5193 (2022).
  33. M. Z. Mo, Z. Chen, R.K. Li et al. (Collaboration), Science 360(6396), 1451 (2018).
  34. Mianzhen Mo, Zhijiang Chen, and Siegfried Glenzer, MRS Bulletin 46(08) (2021).
  35. J.M. Molina and Th.G. White, Inclusion of energy loss in models of laser-irradiated gold films via classical molecular dynamics, in 2021 IEEE International Conference on Plasma Science (ICOPS) (2021), p. 1; 10.1109/ICOPS36761.2021.9588426.
  36. J.M. Molina and T.G. White, Matter and Radiation at Extremes 7(3), 036901 (2022).
  37. M. Arefev, M. Shugaev, and L. Zhigilei, Sci. Adv. 8, eabo2621 (2022).
  38. X.Y. Wang, D.M. Riffe, Y. S. Lee, and M.C. Downer, Phys. Rev. B 50, 8016 (1994).
  39. P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
  40. Yu.V. Petrov, N.A. Inogamov, and K.P. Migdal, JETP Lett. 97(1), 20 (2013).
  41. K.P. Migdal, Y.V. Petrov, and N.A. Inogamov, SPIE Proceedings 9065, 906503 (2013).
  42. K.P. Migdal, Yu.V. Petrov, D.K. Il'nitsky, V.V. Zhakhovsky, N.A. Inogamov, K.V. Khishchenko, D.V. Knyazev, and P.R. Levashov, Appl. Phys. A 122, 408 (2016).
  43. K.P. Migdal, D.K. Il'nitsky, Yu.V. Petrov, and N.A. Inogamov, J. Phys.: Conf. Seri. 653, 012086 (2015).
  44. N.A. Inogamov and Yu.V. Petrov, JETP 110(3), 446 (2010).
  45. D.V. Knyazev and P.R. Levashov, Comput. Mater. Sci. 79, 817 (2013).
  46. Yu.V. Petrov, K.P. Migdal, D.V. Knyazev, N.A. Inogamov, and P.R. Levashov, J. Phys.: Conf. Ser. 774(1), 012103 (2016).
  47. N.A. Smirnov, Phys. Rev. B 106, 024109 (2022).
  48. Yu.V. Petrov, N.A. Inogamov, S. I. Anisimov, K.P. Migdal, V.A. Khokhlov, and K.V. Khishchenko, J. Phys. Conf. Ser. 653, 012087 (2015).
  49. N.A. Inogamov, V.V. Zhakhovskii, and V.A. Khokhlov, JETP 120(1), 15 (2015).
  50. A.V. Bushman, G. I. Kanel', A. L. Ni, and V.E. Fortov, Intense dynamic loading of condensed matter, Taylor & Francis, Washington, D.C. (1993).
  51. K.V. Khishchenko, S. I. Tkachenko, P.R. Levashov, I.V. Lomonosov, and V. S. Vorobev, Int. J. Thermophys. 23(5), 1359 (2002).
  52. I.V. Lomonosov, Laser and Particle Beams 25, 567 (2007).
  53. Yu.V. Petrov, K.P. Migdal, N.A. Inogamov, and V.V. Zhakhovsky, Appl. Phys. B 119(3), 401 (2015).
  54. С.И. Ашитков, Н.А. Иногамов, П.С. Комаров, Ю. В. Петров, С.А. Ромашевский, Д.С. Ситников, Е.В. Струлёва, В.А. Хохлов, Теплофизика высоких температур 60, 218 (2022).
  55. A. Block, M. Liebel, R. Yu, M. Spector, Y. Sivan, F. J. Garc'ıa de Abajo, and N. F. van Hulst, Sci. Adv. 5(5), eaav8965 (2019).
  56. P.M. Norris, A.P. Caffrey, R. J. Stevens, J.M. Klopf, J.T. McLeskey, and A.N. Smith, Rev. Sci. Instrum. 74(1), 400 (2003).
  57. E. L. Radue, J.A. Tomko, A. Giri, J. L. Braun, X. Zhou, O.V. Prezhdo, E. L. Runnerstrom, J.-P. Maria, and P.E. Hopkins, ACS Photonics 5(12), 4880 (2018).
  58. P.E. Hopkins, J.M. Klopf, and P.M. Norris, Appl. Opt. 46(11), 2076 (2007).
  59. P.E. Hopkins and P.M. Norris, Appl. Surf. Sci. 253(15), 6289 (2007).
  60. P. Jiang, X. Qian, and R. Yang, J. Appl. Phys. 124(16), 161103 (2018).
  61. N.A. Inogamov, V.V. Zhakhovskii, S. I. Ashitkov, Yu.V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V.E. Fortov, JETP 107(1), 1 (2008).
  62. B. J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, and I. I. Oleynik, Phys. Rev. B 82, 064113 (2010).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук