Quasistationary Polariton States in Mesocavities

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

When the strength of light–matter interaction (the Rabi splitting) in mesocavities is comparable to the energy spacing between the cavity modes, an exciton mode is coupled simultaneously to a number of optical modes. It has recently been demonstrated that a nonmonotonic dependence of the population of polariton states in mesocavities on the pump intensity is possible. Here, it is shown that an additional quasistationary state may appear in the hysteresis region and the time spent by the system in this state depends on the pump intensity.

Sobre autores

A. Belonovskiy

ITMO University

Email: leha.s92.92@gmail.com
197101, St. Petersburg, Russia

V. Nikolaev

Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences

Email: leha.s92.92@gmail.com
194021, St. Petersburg, Russia

E. Girshova

Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: leha.s92.92@gmail.com
194021, St. Petersburg, Russia

Bibliografia

  1. C. Weisbuch, M. Nishioka, A. Ishikava, and Y. Akarawa, Phys. Rev. Lett. 69(23), 3314 (1992).
  2. R. Houdr'e, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Phys. Rev. Lett. 73(15), 2043 (1994).
  3. J. D. Berger, O. Lynges, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokine, M. A. Kaliteevski, and V. V. Zapasskii, Phys. Rev. B 54(3), 1975 (1996).
  4. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443(7110), 409 (2006).
  5. S. Christopoulos, G. Baldassarri H¨oger von H¨ogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt'e,E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).
  6. A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
  7. A. Tredicucci, Y. Chen, V. Pellegrini, M. B¨orger, and F. Bassani, Phys. Rev. A 54, 3493 (1996).
  8. I. G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).
  9. H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, Phys. Rev. B 85, 075312 (2012).
  10. А. А. Деменев, С. С. Гаврилов, А. C. Бричкин, А. В. Ларионов, В. Д. Кулаковский, Письма в ЖЭТФ 100(8), 583 (2014).
  11. А. А. Деменев, С. С. Гаврилов, В. Д. Кулаковский, Письма в ЖЭТФ 95(1), 42 (2012).
  12. С. С. Гаврилов, А. С. Бричкин, А. А. Дородный, С. Г. Тиходеев, Н. А. Гиппиус, В. Д. Кулаковский, Письма в ЖЭТФ 92(3), 194 (2010).
  13. A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Semiconductor Science and Technology), Oxford University, Oxford (2007).
  14. E. K. Lindmark, T. R. Nelson, H. M. Gibbs, G. Khitrova, A. V. Kavokine, and M. A. Kaliteevski, Opt. Lett. 21, 994 (1996).
  15. A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, Phys. Rev. B 57(23), 14877 (1998).
  16. G. Pozina, C. Hemmingsson, A. V. Belonovski, I. V. Levitskii, M. I. Mitrofanov, E. I. Girshova, K. A. Ivanov, S. N. Rodin, K. M. Morozov, V. P. Evtikhiev, and M. A. Kaliteevski, Phys. Status Solidi A 217, 1900894 (2019).
  17. A. V. Belonovski, I. V. Levitskii, K. M. Morozov, G. Pozina, and M. A. Kaliteevski, Opt. Express 28(9), 12688 (2020).
  18. A. V. Belonovski, K. M. Morozov, E. I. Girshova, G. Pozina, and M. A. Kaliteevski, Opt. Express 29(13), 20724 (2021).
  19. T. C. H. Liew, A. V. Kavokin, T. Ostatnickiy, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, Phys. Rev. B 82, 033302 (2010).
  20. E. B. Magnusson, I. G. Savenko, and I. A. Shelykh, Phys. Rev. B 84, 195308 (2011).
  21. W. J. Firth and A. J. Scroggie, Semiconductor Science and Technology 10, 1623 (1996).
  22. R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973), p. 184.
  23. F. P. Laussy, M. M. Glazov, A. Kavokin, D. M. Whittaker, and M. Guillaume, Phys. Rev. B 73(11), 115343 (2006).
  24. J. P. Reithmaier, Semicond. Sci. Technol. 23(12), 123001 (2008).
  25. F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. B 79, 235325 (2009).
  26. С. С. Гаврилов, УФН 190(2), 137 (2020).
  27. G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).
  28. M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. H¨o ing, Phys. Rev. B 91, 081404 (2015).
  29. M. A. Kaliteevski, K. A. Ivanov, G. Pozina, and A. J. Gallant, Sci. Rep. 4, 5444 (2014).
  30. S. S. Demirchyan, T. A. Khudaiberganov, I. Y. Chestnov, and A. P. Alodzhants, Journal of Optical Technology 84(2), 75(2017).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023