Unconventional Fractional Quantum Hall States in a Wide Quantum Well

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A bilayer electron system that is formed in a 60-nm-wide GaAs quantum well and has a large difference of the electron densities in the layers has been studied. It has been found that, when a magnetic field is tilted from the normal to the plane of the system, integer quantum Hall effect states at the filling factors of Landau levels of 1 and 2 disappear; instead, fractional quantum Hall effect states in the interval between these filling factors appear at the filling factors νF = 4/3, 10/7, and 6/5 with odd denominators and at the filling factor νF = 5/4. Several different states can be observed under the variation of the magnetic field. The detected fractional quantum Hall effect states are interpreted as combined states with the same filling factor 1 in the layer with the higher density and with the filling factors νF – 1 in the layer with the lower density. These states are formed because of the redistribution of electrons between the layers, which occurs under the variation of the magnetic field. The appearance of the state with the filling factor νF = 5/4 with the even denominator is presumably attributed to the dominance of the interlayer electron–electron interaction over the intralayer one for electrons in the layer with the lower density.

About the authors

S. I Dorozhkin

Osipyan Institute of Solid State Physics, Russian Academy of Science

Email: dorozh@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

A. A Kapustin

Osipyan Institute of Solid State Physics, Russian Academy of Science

Email: dorozh@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

I. B Fedorov

Osipyan Institute of Solid State Physics, Russian Academy of Science

Email: dorozh@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia

V. Umanskiy

Department of Physics, Weizmann Institute of Science

Email: dorozh@issp.ac.ru
76100, Rehovot, Israel

Yu. Kh Smet

Max-Planck-Institut für Festkörperforschung

Author for correspondence.
Email: dorozh@issp.ac.ru
D-70569, Stuttgart, Germany

References

  1. G. S. Boebinger, H. W. Jiang, L. N. Pfei er, and K. W. West, Phys. Rev. Lett. 64, 1793 (1990).
  2. Y. W. Suen, J. Jo, M. B. Santos, L. W. Engel, S. W. Hwang, and M. Shayegan, Phys. Rev. B 44, 5947 (1991).
  3. J. I. A. Li, Q. Shi, Y. Zeng, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean, Nat. Phys. 15, 898 (2019).
  4. X. Liu, Z. Hao, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim, Nat. Phys. 15, 893 (2019).
  5. Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 68, 1379 (1992).
  6. J. P. Eisenstein, G. S. Boebinger, L. N. Pfei er, K. W. West, and S. He, Phys. Rev. Lett. 68, 1383 (1992).
  7. D. R. Luhman, W. Pan, D. C. Tsui, L. N. Pfei er, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 101, 266804 (2008).
  8. J. Shabani, T. Gokmen, and M. Shayegan, Phys. Rev. Lett. 103, 046805 (2009)
  9. J. P. Eisenstein, Ann. Rev. Condens. Matter Phys. 5, 159 (2014).
  10. X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim, Nat. Phys. 13, 746 (2017).
  11. J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone and C. R. Dean, Nat. Phys. 13, 751 (2017).
  12. H. C. Manoharan, Y. W. Suen, T. S. Lay, M. B. Santos, and M. Shayegan, Phys. Rev. Lett. 79, 2722 (1997).
  13. Y. Liu, S. Hasdemir, J. Shabani, M. Shayegan, L. N. Pfei er, K. W. West, and K. W. Baldwin, Phys. Rev. B 92, 201101(R) (2015).
  14. S. I. Dorozhkin, A. A. Kapustin, I. B. Fedorov, V. Umansky, K. von Klitzing, and J. H. Smet, J. Appl. Phys. 123, 084301 (2018).
  15. S. I. Dorozhkin, A. A. Kapustin, I. B. Fedorov, V. Umansky, and J. H. Smet, Phys. Rev. B 102, 235307 (2020).
  16. A. Sawada, Z. F. Ezawa, H. Ohno, Y. Horikoshi, A. Urayama, Y. Ohno, S. Kishimoto, F. Matsukura, and N. Kumada, Phys. Rev. B 59, 14 888 (1999).
  17. T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696(R) (1985).
  18. S. V. Kravchenko, V. M. Pudalov, and S. G. Semenchinsky, Phys. Lett. A 141, 71 (1989).
  19. С. И. Дорожкин, А. А. Шашкин, Н. Б. Житенев, В. Т. Долгополов, Письма в ЖЭТФ 44, 189 (1986).
  20. A. R. Champagne, A. D. K. Finck, J. P. Eisenstein, L. N. Pfei er, and K. W. West, Phys. Rev. B 78, 205310 (2008).
  21. H. Deng, Y. Liu, I. Jo, L. N. Pfei er, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. B 96, 081102(R) (2017).
  22. А. А. Капустин, С. И. Дорожкин, И. Б. Федоров, В. Уманский, Ю. Х. Смет, Письма в ЖЭТФ 110, 407 (2019).
  23. G. A. Bara and D. C. Tsui, Phys. Rev. B 24, 2274 (1981).
  24. С. И. Дорожкин, Письма в ЖЭТФ 103, 578 (2016).
  25. J. Hu and A. H. MacDonald, Phys. Rev. B 46, 12554 (1992).
  26. K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin, D. Yoshioka, and S.-C. Zhangs, Phys. Rev. Lett. 72, 732 (1994).
  27. C. B. Hanna, A. H. MacDonald, and S. M. Girvin, Phys. Rev. B 63, 125305 (2001).
  28. M. A. Mueed, D. Kamburov, L. N. Pfei er, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. Lett. 117, 246801 (2016).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук