Unconventional Fractional Quantum Hall States in a Wide Quantum Well
- Authors: Dorozhkin S.I1, Kapustin A.A1, Fedorov I.B1, Umanskiy V.2, Smet Y.K.3
-
Affiliations:
- Osipyan Institute of Solid State Physics, Russian Academy of Science
- Department of Physics, Weizmann Institute of Science
- Max-Planck-Institut für Festkörperforschung
- Issue: Vol 117, No 1-2 (1) (2023)
- Pages: 72-79
- Section: Articles
- URL: https://rjraap.com/0370-274X/article/view/663589
- DOI: https://doi.org/10.31857/S123456782301010X
- EDN: https://elibrary.ru/NVSRMF
- ID: 663589
Cite item
Abstract
A bilayer electron system that is formed in a 60-nm-wide GaAs quantum well and has a large difference of the electron densities in the layers has been studied. It has been found that, when a magnetic field is tilted from the normal to the plane of the system, integer quantum Hall effect states at the filling factors of Landau levels of 1 and 2 disappear; instead, fractional quantum Hall effect states in the interval between these filling factors appear at the filling factors νF = 4/3, 10/7, and 6/5 with odd denominators and at the filling factor νF = 5/4. Several different states can be observed under the variation of the magnetic field. The detected fractional quantum Hall effect states are interpreted as combined states with the same filling factor 1 in the layer with the higher density and with the filling factors νF – 1 in the layer with the lower density. These states are formed because of the redistribution of electrons between the layers, which occurs under the variation of the magnetic field. The appearance of the state with the filling factor νF = 5/4 with the even denominator is presumably attributed to the dominance of the interlayer electron–electron interaction over the intralayer one for electrons in the layer with the lower density.
About the authors
S. I Dorozhkin
Osipyan Institute of Solid State Physics, Russian Academy of Science
Email: dorozh@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia
A. A Kapustin
Osipyan Institute of Solid State Physics, Russian Academy of Science
Email: dorozh@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia
I. B Fedorov
Osipyan Institute of Solid State Physics, Russian Academy of Science
Email: dorozh@issp.ac.ru
142432, Chernogolovka, Moscow region, Russia
V. Umanskiy
Department of Physics, Weizmann Institute of Science
Email: dorozh@issp.ac.ru
76100, Rehovot, Israel
Yu. Kh Smet
Max-Planck-Institut für Festkörperforschung
Author for correspondence.
Email: dorozh@issp.ac.ru
D-70569, Stuttgart, Germany
References
- G. S. Boebinger, H. W. Jiang, L. N. Pfei er, and K. W. West, Phys. Rev. Lett. 64, 1793 (1990).
- Y. W. Suen, J. Jo, M. B. Santos, L. W. Engel, S. W. Hwang, and M. Shayegan, Phys. Rev. B 44, 5947 (1991).
- J. I. A. Li, Q. Shi, Y. Zeng, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean, Nat. Phys. 15, 898 (2019).
- X. Liu, Z. Hao, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim, Nat. Phys. 15, 893 (2019).
- Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan, and D. C. Tsui, Phys. Rev. Lett. 68, 1379 (1992).
- J. P. Eisenstein, G. S. Boebinger, L. N. Pfei er, K. W. West, and S. He, Phys. Rev. Lett. 68, 1383 (1992).
- D. R. Luhman, W. Pan, D. C. Tsui, L. N. Pfei er, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 101, 266804 (2008).
- J. Shabani, T. Gokmen, and M. Shayegan, Phys. Rev. Lett. 103, 046805 (2009)
- J. P. Eisenstein, Ann. Rev. Condens. Matter Phys. 5, 159 (2014).
- X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim, Nat. Phys. 13, 746 (2017).
- J. I. A. Li, T. Taniguchi, K. Watanabe, J. Hone and C. R. Dean, Nat. Phys. 13, 751 (2017).
- H. C. Manoharan, Y. W. Suen, T. S. Lay, M. B. Santos, and M. Shayegan, Phys. Rev. Lett. 79, 2722 (1997).
- Y. Liu, S. Hasdemir, J. Shabani, M. Shayegan, L. N. Pfei er, K. W. West, and K. W. Baldwin, Phys. Rev. B 92, 201101(R) (2015).
- S. I. Dorozhkin, A. A. Kapustin, I. B. Fedorov, V. Umansky, K. von Klitzing, and J. H. Smet, J. Appl. Phys. 123, 084301 (2018).
- S. I. Dorozhkin, A. A. Kapustin, I. B. Fedorov, V. Umansky, and J. H. Smet, Phys. Rev. B 102, 235307 (2020).
- A. Sawada, Z. F. Ezawa, H. Ohno, Y. Horikoshi, A. Urayama, Y. Ohno, S. Kishimoto, F. Matsukura, and N. Kumada, Phys. Rev. B 59, 14 888 (1999).
- T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696(R) (1985).
- S. V. Kravchenko, V. M. Pudalov, and S. G. Semenchinsky, Phys. Lett. A 141, 71 (1989).
- С. И. Дорожкин, А. А. Шашкин, Н. Б. Житенев, В. Т. Долгополов, Письма в ЖЭТФ 44, 189 (1986).
- A. R. Champagne, A. D. K. Finck, J. P. Eisenstein, L. N. Pfei er, and K. W. West, Phys. Rev. B 78, 205310 (2008).
- H. Deng, Y. Liu, I. Jo, L. N. Pfei er, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. B 96, 081102(R) (2017).
- А. А. Капустин, С. И. Дорожкин, И. Б. Федоров, В. Уманский, Ю. Х. Смет, Письма в ЖЭТФ 110, 407 (2019).
- G. A. Bara and D. C. Tsui, Phys. Rev. B 24, 2274 (1981).
- С. И. Дорожкин, Письма в ЖЭТФ 103, 578 (2016).
- J. Hu and A. H. MacDonald, Phys. Rev. B 46, 12554 (1992).
- K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin, D. Yoshioka, and S.-C. Zhangs, Phys. Rev. Lett. 72, 732 (1994).
- C. B. Hanna, A. H. MacDonald, and S. M. Girvin, Phys. Rev. B 63, 125305 (2001).
- M. A. Mueed, D. Kamburov, L. N. Pfei er, K. W. West, K. W. Baldwin, and M. Shayegan, Phys. Rev. Lett. 117, 246801 (2016).
Supplementary files
