Anomalous Behavior of the Tunneling Magnetoresistance in (CoFeB)x(LiNbO3)100 − x/Si Nanocomposite Film Structures Below the Percolation Threshold: Manifestations of the Cotunneling and Exchange Effects
- Authors: Nikolaev S.N.1, Chernoglazov K.Y.2, Emel'yanov A.V.1, Sitnikov A.V.1,3, Taldenkov A.N.4, Patsaev T.D.5, Vasil'ev A.L.1, Gan'shina E.A.6, Demin V.A.1
-
Affiliations:
- National Research Centre Kurchatov Institute
- National Research Center “Kurchatov Institute”
- Voronezh State Technical University
- Russian Research Centre “Kurchatov Institute,”
- National Research Center Kurchatov Institute
- Faculty of Physics, Moscow State University
- Issue: Vol 118, No 1-2 (7) (2023)
- Pages: 46-54
- Section: Articles
- URL: https://rjraap.com/0370-274X/article/view/663097
- DOI: https://doi.org/10.31857/S1234567823130104
- EDN: https://elibrary.ru/GBZZQC
- ID: 663097
Cite item
Abstract
A strongly nonmonotonic temperature dependence of the magnetoresistance in (CoFeB)x(LiNbOy)100 – x film nanocomposites (x ≈ 40–48 at %) is observed in the temperature range of 3–250 K at the magnetic field up to 14 T near the percolation threshold on its insulating side. The magnetoresistance has a minimum at 40 K and increases steeply on cooling. Such behavior of the magnetoresistance is attributed to the coexistence of superferromagnetic regions with exchange-coupled granules separated by regions with superparamagnetic granules in the nanocomposite. In this case, an increase in the negative magnetoresistance at T > 40 K is due to the destruction of superferromagnetic ordering, whereas an increase in the magnetoresistance at T < 40 K is related to the processes involving simultaneous elastic tunneling via the chains of granules. At the saturation of the magnetization, an additional negative contribution arises, which is probably due to the quantum interference effects. At T < 4 K, a double-well shape of the field dependence of the magnetoresistance is observed, which could be attributed to the effect of a positive contribution that competes with the negative magnetoresistance.
About the authors
S. N. Nikolaev
National Research Centre Kurchatov Institute
Email: drovosekov@kapitza.ras.ru
Russian Federation, Moscow, 123182
K. Yu. Chernoglazov
National Research Center “Kurchatov Institute”
Email: onov@mail.ru
Russian Federation, Moscow, 123182
A. V. Emel'yanov
National Research Centre Kurchatov Institute
Email: vvrylkov@mail.ru
Moscow, 123182
A. V. Sitnikov
National Research Centre Kurchatov Institute;Voronezh State Technical University
Email: vvrylkov@mail.ru
Moscow, 123182;Voronezh, 394026 Russia
A. N. Taldenkov
Russian Research Centre “Kurchatov Institute,”
Email: box-n3@bk.ru
Russian Federation, pl. Kurchatova 1, Moscow, 123182
T. D. Patsaev
National Research Center Kurchatov Institute
Email: a.vasiliev56@gmail.com
Russian Federation, Moscow, 123182
A. L. Vasil'ev
National Research Centre Kurchatov Institute
Email: vvrylkov@mail.ru
Moscow, 123182 Russia
E. A. Gan'shina
Faculty of Physics, Moscow State University
Email: vvrylkov@mail.ru
Moscow, 119991 Russia
V. A. Demin
National Research Centre Kurchatov Institute
Author for correspondence.
Email: vvrylkov@mail.ru
Moscow, 123182 Russia
References
- I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
- S. Bedanta, T. Eimuller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, and P. P. Freitas, Phys. Rev. Lett. 98, 176601 (2007).
- I. S. Beloborodov, A. Glatz, and V. M. Vinokur, Phys. Rev. Lett. 99, 066602 (2007).
- S. Bedanta and W. Kleemann, J. Phys. D 42, 013001 (2009).
- A. Milner, A. Gerber, B. Groisman, M. Karpovsky, and A. Gladkikh, Phys. Rev. Lett. 76, 475 (1996).
- N. Kobayashi, S. Ohnuma, T. Masumoto, and H. Fujimori, J. Appl. Phys. 90, 4159 (2001).
- A. Pakhomov, X. Yan, and B. Zhao, Appl. Phys. Lett. 67, 3497 (1995).
- Б. А. Аронзон, Д. Ю. Ковалев, А. Н. Лагарьков, Е. З. Мейлихов, В. В. Рыльков, М. В. Седова, N. Negre, M. Goiran, and J. Leotin, Письма в ЖЭТФ 70, 87 (1999).
- Б. А. Аронзон, А. Б. Грановский, Д. Ю. Ковалев, Е. З. Мейлихов, В. В. Рыльков, М. А. Седова, Письма в ЖЭТФ 71, 687 (2000).
- А. Б. Грановский, И. В. Быков, Е. А. Ганьшина, В. С. Гущин, М. Инуе, Ю. Е. Калинин, А. А. Козлов, А. Н. Юрасов, ЖЭТФ 123, 1256 (2003).
- Е. А. Ганьшина, М. В. Вашук, А. Н. Виноградов, А. Б. Грановский, В. С. Гущин, П. Н. Щербак, Ю. Е. Калинин, А. В. Ситников, Ч. О. Ким, Ч. Г. Ким, ЖЭТФ 125, 1172 (2004).
- V. V. Rylkov, S. N. Nikolaev, K. Yu. Chernoglazov, V. A. Demin, A. V. Sitnikov, M. Yu. Presnyakov, A. L. Vasiliev, N. S. Perov, A. S. Vedeneev, Yu. E. Kalinin, V. V. Tugushev, and A. B. Granovsky, Phys. Rev. B 95, 144202 (2017).
- V. V. Rylkov, A. V. Sitnikov, S. N. Nikolaev, V. A. Demin, A. N. Taldenkov, M. Yu. Presnyakov, A. V. Emelyanov, A. L. Vasiliev, Yu. E. Kalinin, A. S. Bugaev, V. V. Tugushev, A. B. Granovsky, J. Magn. Magn. Mater. 459, 197 (2018).
- В. В. Рыльков, С. Н. Николаев, В. А. Демин и др. (Collaboration), ЖЭТФ 153, 424 (2018).
- В. В. Рыльков, А. В. Емельянов, С. Н. Николаев, К. Э. Никируй, А. В. Ситников, Е. А. Фадеев, В. А. Демин, А. Б. Грановский, ЖЭТФ 158, 164 (2020).
- M. N. Martyshov, A. V. Emelyanov, V. A. Demin et al. (Collaboration), Phys. Rev. Appl. 14, 034016 (2020).
- A. V. Emelyanov, K. E. Nikiruy, A. V. Serenko, A. V. Sitnikov, M. Yu. Presnyakov, R. B. Rybka, A. G. Sboev, V. V. Rylkov, P. K. Kashkarov, M. V. Kovalchuk, and V. A. Demin, Nanotechnology 31, 045201 (2020).
- A. N. Matsukatova, A. I. Ilyasov, K. E. Nikiruy, E. V. Kukueva, A. L. Vasiliev, B. V. Goncharov, A. V. Sitnikov, M. L. Zanaveskin, A. S. Bugaev, V. A. Demin, V. V. Rylkov, and A. V. Emelyanov, Nanomaterials 12, 3455 (2022).
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan, W. Mao, J. Yang, L. Chu, and X. Li, Nano-Micro Lett. 13, 85 (2021).
- M. Lanza, A. Sebastian, W. D. Lu, M. L. Gallo, M.-F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, and J. B. Roldan, Science 376, 1066 (2022).
- А. Б. Дровосеков, Н. М. Крейнес, О. А. Ковалев, А. В. Ситников, С. Н. Николаев, В. В. Рыльков, ЖЭТФ 162, 426 (2022).
- O. G. Udalov and I. S. Beloborodov, Phys. Rev. B 95, 045427 (2017).
- T. Mitsuyu and K. Wasa, Jpn. J. Appl. Phys. 20, L48 (1981).
- S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori, Phys. Rev. Lett. 81, 2799 (1998).
- M. V. Feigel'man and A. S. Ioselevich, JETP Lett. 81, 227 (2005).
- G. V. Swamy, H. Pandey, A. K. Srivastava, M. K. Dalai, K. K. Maurya, Rashmi, and R. K. Rakshit, AIP Adv. 3, 072129 (2013).
- K. B. Еfetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003).
- J. Inoue and S. Maekawa, Phys. Rev. B 53, R11929 (1996).
- X. Batlle and A. Labarta, J. Phys. D: Appl. Phys. 35, R15 (2002).
- Б. А. Аронзон, Н. К. Чумаков, Т. Дитл, И. Врубель, ЖЭТФ 105, 405 (1994).
- H. L. Zhao, B. Z. Spivak, M. P. Celfand, and S. Feng, Phys. Rev. B 44, 10760 (1991).
- А. Л. Хорошилов, А. В. Богач, С. В. Демишев, К. М. Красиков, С. Е. Половец, Н. Ю. Шицевалова, В. Б. Филипов, Н. Е. Случанко, Письма в ЖЭТФ 115, 150 (2022).
- A. Glatz, I. S. Beloborodov, and V. M. Vinokur, EPL 82, 47002 (2008).
- A. A. Timopheev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, V. A. Stephanovich, A. M. Grishin, and M. Munakata, J. Appl. Phys. 105, 083905 (2009).
- A. A. Timopheev, I. Bdikin, A. F. Lozenko, O. V. Stognei, A. V. Sitnikov, A. V. Los, and N. A. Sobolev, J. Appl. Phys. 111, 123915 (2012).
- M. I. Blinov, M. A. Shakhov, V. V. Rylkov, E. Lahderanta, V. N. Prudnikov, S. N. Nikolaev, A. V. Sitnikov, and A. B. Granovsky, J. Magn. Magn. Mater. 469, 155 (2019).
- Е. А. Фадеев, М. А. Шахов, Е. Лахдеранта, А. Н. Талденков, А. Л. Васильев, А. В. Ситников, В. В. Рыльков, А. Б. Грановский, ЖЭТФ 160(6), 903 (2021).
- A. P. Zhernov, Low Temp. Phys. 26, 908 (2000).
Supplementary files
