Terahertz Third-Harmonic Generation in Topological Insulators Based on Bismuth and Antimony Chalcogenides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Terahertz third-harmonic generation in topological insulators based on bismuth and antimony chalcogenides has been experimentally investigated. It has been found that the third-harmonic conversion efficiency is inversely proportional to the electron Fermi energy; among the materials under study, antimony telluride has the highest conversion efficiency.

About the authors

K. A. Kuznetsov

Department of Quantum Electronics, Faculty of Physics, Moscow State University

Email: kirill-spdc@yandex.ru
119992, Moscow, Russia

P. I. Kuznetsov

Kotelnikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: pik@fireras.ru
141190, Fryazino, Moscow region, Russia

A. D. Frolov

Department of Quantum Electronics, Faculty of Physics, Moscow State University

Email: kirill-spdc@yandex.ru
119992, Moscow, Russia

A. M. Konovalov

Department of Quantum Electronics, Faculty of Physics, Moscow State University

Email: kirill-spdc@yandex.ru
119992, Moscow, Russia

P. M. Kovaleva

Department of Quantum Electronics, Faculty of Physics, Moscow State University

Email: kirill-spdc@yandex.ru
119992, Moscow, Russia

G. Kh. Kitaeva

Department of Quantum Electronics, Faculty of Physics, Moscow State University

Author for correspondence.
Email: kirill-spdc@yandex.ru
119992, Moscow, Russia

References

  1. B.A. Volkov and O.A. Pankratov, JETP 42, 178 (1985).
  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010); doi: 10.1103/RevModPhys.82.3045.
  3. D.A. Kozlov, Z.D. Kvon, E.B. Olshanetsky, N.N. Mikhailov, S.A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 112, 196801 (2014); doi: 10.1103/PhysRevLett.112.196801.
  4. P. Olbrich, L.E. Golub, T. Herrmann, S.N. Danilov, H. Plank, V.V. Bel'kov, G. Mussler, Ch. Weyrich, C.M. Schneider, J. Kampmeier, D. Gr¨utzmacher, L. Plucinski, M. Eschbach, and S.D. Ganichev, Phys. Rev. Lett. 113, 096601 (2014); doi: 10.1103/PhysRevLett.113.09660.
  5. K.M. Dantscher, D.A Kozlov, P. Olbrich et al. (Collaboration), Phys. Rev. 92, 165314 (2015); doi: 10.1103/PhysRevB.92.165314.
  6. K.A. Kuznetsov, D.A. Safronenkov, P. I. Kuznetsov, and G.Kh. Kitaeva, Appl. Sci. 11, 5580 (2021); doi: 10.3390/app11125580.
  7. F. Giorgianni, E. Chiadroni, A. Rovere et al. (Collaboration), Nat. Commun. 7, 11421 (2016); doi: 10.1038/ncomms11421.
  8. S. Kovalev, K.-J. Tielrooij, J.C. Deinert et al. (Collaboration), NPJ QM 6, 84 (2021); doi: 10.1038/s41535-021-00384-9.
  9. K.A. Kuznetsov, S.A. Tarasenko, P.M. Kovaleva, P. I. Kuznetsov, D.V. Lavrukhin, Yu.G. Goncharov, A.A. Ezhov, D. S. Ponomarev, and G.Kh. Kitaeva, Nanomaterials 12, 3779 (2022); doi: 10.3390/nano12213779.
  10. K.-J. Tiellrooij, A. Principi, D. S. Reig et al. (Collaboration), Light Sci. Appl. 11, 2047 (2022); doi: 10.1038/s41377-022-01008-y.
  11. H.A. Hafez, S. Kovalev, J.-Ch. Deinert et al. (Collaboration), Nature 561, 507 (2018); doi: 10.1038/s41586-018-0508-1.
  12. H.A. Hafez, S. Kovalev, K.-J. Tielrooij, M. Bonn, M. Gensch, and D. Turchinovich, Adv. Opt. Mater. 8, 1900771 (2020); doi: 10.1002/adom.201900771.
  13. S. Kovalev, R.M.A. Dantas, S. Germanskiy, J.-Ch. Deinert, B. Green, I. Ilyakov, N. Awari, M. Chen, M. Bawatna, J. Ling, F. Xiu, P.H.M. van Loosdrecht, P. Surowka, T. Oka, and Zh. Wang, Nat. Commun. 11, 2451 (2020); doi: 10.1038/s41467-020-16133-8.
  14. Z. Mics, K.-J. Tielrooij, Kh. Parvez, S.A. Jensen, I. Ivanov, X. Feng, K. M¨ullen, M. Bonn, and D. Turchinovich, Nat. Commun. 6, 7655 (2015); doi: 10.1038/ncomms8655.
  15. J.C. Deinert, D.A. Iranzo, R. Perez et. al. (Collaboration), ACS Nano 15, 1145 (2021); doi: 10.1021/acsnano.0c08106.
  16. P. I. Kuznetsov, V.O. Yapaskurt, B. S. Shchamkhalova, V.D. Shcherbakov, G.G. Yakushceva, V.A. Luzanov, and V.A. Jitov, J. Cryst. Growth 455, 122 (2016); doi: 10.1016/j.jcrysgro.2016.09.055.
  17. Z. Ren, A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. 84, 165311 (2011); doi: 10.1103/PhysRevB.84.165311.
  18. W. Withayachumnankul and M. Naftaly, J. Infrared Millim. Terahertz Waves 35, 610 (2014); doi: 10.1007/s10762-013-0042-z.
  19. M. Tinkham, Phys. Rev. 104, 845 (1956); doi: 10.1103/PhysRev.104.845.
  20. L. S. Bilbro, R. Vald'es Aguilar, G. Logvenov, O. Pelleg, I. Bozˇovi'c, and N.P. Armitage, Nat. Phys. 7, 298 (2011); doi: 10.1038/nphys1912.
  21. K. Kuznetsov, P. Kuznetsov, A. Frolov, S. Kovalev, I. Ilyakov, A. Ezhov, and G.Kh. Kitaeva, Opt. Eng. 60, 082012 (2021); doi: 10.1117/1.OE.60.8.082012.
  22. Y.-B. Gao, B. He, D. Parker, I. Androulakis, and J. P. Heremans, Phys. Rev. B 90, 125204 (2014); doi: 10.1103/PhysRevB.90.125204.
  23. B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008); doi: 10.1103/PhysRevB.77.125209.
  24. B.C. Park, T.-H. Kim, K.-I. Sim, B. Kang, J.W. Kim, B. Cho, K.-H. Jeong, M.-H. Cho, and J.H. Kim, Nat. Commun. 6, 6552 (2015); doi: 10.1038/ncomms7552.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук