Atomic Electron Shell Excitations in Double-β Decay

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of the transition of electron shells of atoms to excited states in the process of neutrinoless double-β">β decay is investigated. This subject is crucial for modeling the energy spectrum of β">β-electrons, which is sensitive to the mass and Majorana nature of neutrinos. The dependence of the obtained results on the atomic number indicates an important role of the Feinberg–Migdal effect in the electron shell excitations. We report the overlap amplitudes of the electron shells of the parent atom and the daughter ion for eleven atoms, the two-neutrino double-β">β decay of which was observed experimentally. In around one-fourth of the cases where the structure of the electron shells is inherited from the parent atom, there is a transition to the ground state or the excited state with the lowest energy. The de-excitation of the daughter ion in the latter scenario is accompanied by the emission of photons in the ultraviolet range, which can serve as an auxiliary signature of double-β">β decay. The average excitation energy of the electron shells ranges between 300 and 800 eV, with the variance ranging from (1.7 keV)2 in calcium to (14 keV)2 in uranium.

About the authors

M. I. Krivoruchenko

National Research Center Kurchatov Institute

Email: mikhail.krivoruchenko@itep.ru
123182, Moscow, Russia

K. S. Tyrin

National Research Center Kurchatov Institute

Email: tyrin_ks@nrcki.ru
123182, Moscow, Russia

F. F. Karpeshin

Mendeleev All-Russian Research Institute of Metrology (VNIIM)

Author for correspondence.
Email: fkarpeshin@yandex.ru
190005, St. Petersburg, Russia

References

  1. D. G. Phillips II, W. M. Snow, K. Babu et al. (Collaboration), Phys. Rep. 612, 1 (2016).
  2. J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).
  3. M. Hirsch, S. Kovalenko, and I. Schmidt, Phys. Lett. B 642, 106 (2006).
  4. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
  5. The GERDA Collaboration, Nature 544, 47 (2017).
  6. G. Anton, I. Badhrees, P. S. Barbeau et al. (EXO-200 Collaboration), Phys. Rev. Lett. 123, 161802 (2019).
  7. R. Arnold, C. Augier, J. D. Baker et al. (NEMO-3 Collaboration), Phys. Rev. D 89, 111101(R) (2014).
  8. R. Arnold, C. Augier, J. D. Baker et al. (NEMO-3 Collaboration), Phys. Rev. D 92, 072011 (2015).
  9. D. Q. Adams, C. Alduino, K. Alfonso et al. (CUORE Collaboration), Phys. Rev. Lett. 124, 122501 (2020).
  10. D. Q. Adams, C. Alduino, K. Alfonso et al. (CUORE Collaboration), Nature 604, 53 (2022).
  11. S. Abe, S. Asami, M. Eizuka et al. (KamLAND-Zen Collaboration), Phys. Rev. Lett. 130, 051801 (2023).
  12. F. Sˇimkovic, A. Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C 77, 045503 (2008).
  13. J. T. Suhonen, Front. Phys. 5, 55 (2017).
  14. Ф. Шимковиц, УФН 191, 1307 (2021)
  15. F. Sˇimkovic, Phys.-Uspekhi 64, 1238 (2021).
  16. E. L. Feinberg, J. Phys. (USSR) 4, 423 (1941).
  17. A. Мигдал, ЖЭТФ 11, 207 (1941).
  18. М. И. Криворученко, К. С. Тырин, Ф. Ф. Карпешин, Письма в ЖЭТФ 117, 887 (2023)
  19. M. I. Krivoruchenkoa, K. S. Tyrin, and F. F. Karpeshin, JETP Lett. 117, 884 (2023).
  20. I. Lindgren, Journal of Electron Spectroscopy and Related Phenomena 137-140, 59 (2004).
  21. D. S. Akerib, S. Alsum, H. M. Arau'jo et al. (LUX Collaboration), Phys. Rev. Lett. 122, 131301 (2019).
  22. E. Aprile, J. Aalbers, F. Agostini et al. (XENON Collaboration), Phys. Rev. Lett. 123, 241803 (2019).
  23. P. Agnes, I. F. M. Albuquerque, T. Alexander et al. (DarkSide Collaboration), Phys. Rev. Lett. 130, 101001 (2023).
  24. M. I. Krivoruchenko and K. S. Tyrin, Eur. Phys. J. A 56, 16 (2020).
  25. F. F. Karpeshin, M. B. Trzhaskovskaya, and L. F. Vitushkin, Yad. Fiz. 83, 344 (2020)
  26. F. F. Karpeshin, M. B. Trzhaskovskaya, and L. F. Vitushkin, Phys. At. Nucl. 83, 608 (2020).
  27. F. F. Karpeshin and M. B. Trzhaskovskaya, Yad. Fiz. 85, 387 (2022)
  28. F. F. Karpeshin and M. B. Trzhaskovskaya, Phys. At. Nucl. 85 (2020).
  29. F. F. Karpeshin and M. B. Trzhaskovskaya, Phys. Rev. C 107, 045502 (2023).
  30. L. D. Landau and E. M. Lifschitz, Quantum Mechanics:Non-relativistic Theory. Course of Theoretical Physics, 3rd ed., Pergamon, London (1977), v. 3.
  31. P. A. M. Dirac, Math. Proc. Cambridge Phil. Soc. 26, 376 (1930).
  32. C. F. von Weizs¨acker, Zeitschrift fu¨r Physik 96, 431 (1935).
  33. D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems, Pergamon Press, Oxford (1967), p. 394.
  34. E. K. U. Gross and R. M. Dreizler, Phys. Rev. А 20, 1798 (1979).
  35. W. Stich, E. K. U. Gross, P. Malzacher, and R. M. Dreizler, Z. Phys. A 309, 5 (1982).
  36. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
  37. C. C. Lu, T. A. Carlson, F. B. Malik, T. C. Tucker, and C. W. Nestor, Jr., At. Data Nucl. Data Tables 3, 1 (1971).
  38. J. P. Desclaux, At. Data Nucl. Data Tables 12, 31l (1973).
  39. K.-N. Huang, M. Aoyagi, M. H. Chen, B. Grasemann, and H. Mark, At. Data Nucl. Data Tables 18, 243 (1976).
  40. K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Blummer, Comput. Phys.Commun. 55, 425 (1989).
  41. I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, Springer Science + Business Media, N.Y. (2007).
  42. I. M. Band, M. A. Listengarten, M. B. Trzhaskovskaya, and V. I. Fomichev, Computer Program Complex RAINE I-IV, Leningrad Nuclear Physics Institute Reports LNPI-289 (1976), LNPI-298 (1977), LNPI-299 (1977), and LNPI-300 (1977).
  43. I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor Jr., P. O. Tikkanen, and S. Raman, At. Data Nucl. Data Tables 81, 1 (2002).
  44. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2022), NIST Atomic Spectra Database (ver. 5.10), https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg; MD. DOI: https://doi.org/10.18434/T4W30F.
  45. В. С. Королюк, Н. И. Портенко, А. В. Скороход, А. Ф. Турбин, Справочник по теории вероятностей и математической статистике, Наука, M. (1985), 640 с.
  46. A.A. Kwiatkowski, T. Brunner, J.D. Holt, A. Chaudhuri, U. Chowdhury, M. Eibach, J.Engel, A.T. Gallant, A. Grossheim, M. Horoi, A. Lennarz, T.D. Macdonald, M.R. Pearson, B.E. Schultz, M.C. Simon, R.A. Senkov, V.V. Simon, K. Zuber, and J. Dilling, Phys. Rev. C 89, 045502 (2014).
  47. M. Suhonen, I. Bergstr¨om, T. Fritioff, Sz. Nagy, A. Solders, and R. Schuch, J. Instrum. 2, 06003 (2007).
  48. D. L. Lincoln, J.D. Holt, G. Bollen, and M. Brodeur, S. Bustabad, J. Engel, S. J. Novario, M. Redshaw, R. Ringle, and S. Schwarz, Phys. Rev. Lett. 110, 012501 (2013).
  49. M. Alanssari, D. Frekers, T. Eronen et al. (Collaboration), Phys. Rev. Lett. 116, 072501 (2016).
  50. S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, J. Julin, A. Kankainen, A. Saastamoinen, J. Suhonen, C. Weber, and J. Aysto, Phys. Lett. B 662, 111 (2008).
  51. S. Rahaman, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen, C. Weber, and J. Aysto, Phys. Lett. B 703, 412 (2011).
  52. N.D. Scielzo, S. Caldwell, G. Savard, J.A. Clark, C.M. Deibel, J. Fallis, S. Gulick, D. Lascar, A. F. Levand, G. Li, J. Mintz, E. B. Norman, K. S. Sharma, M. Sternberg, T. Sun, and J. van Schelt, Phys. Rev. C 80, 025501 (2009).
  53. M. Redshaw, E. Wingfield, J. McDaniel, and E.G. Myers, Phys. Rev. Lett. 98, 053003 (2007).
  54. V. S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, I.D. Moore, J. Rissanen, A. Saastamoinen, J. Suhonen, and J. ¨Ayst¨o, Phys. Rev. C 82, 022501 (2010).
  55. Table of isotopes, Ed. by R.B. Firestone, V. S. Shirley, C.M. Baglin, S.Y. Frank Chu, and J. Zipkin, Wiley-Interscience, N.Y. (1996).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Российская академия наук