Hybridization of acoustic Tamm states and defective modes of one-dimensional phonon crystal

Cover Page

Cite item

Full Text

Abstract

The spectral properties of a one-dimensional phonon crystal bounded by a reflector in the form of an air layer are studied. The presence of a defect in a phonon crystal with a reflector at the edge leads to a connection between the defective mode and the acoustic Tamm state. This connection of modes of different nature manifests itself in the form of hybridization of modes, and the pushing apart of dips in the reflection spectrum is explained by avoided crossing of modes.

About the authors

A. S Zuev

Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Siberian Federal University

Krasnoyarsk, Russia; Krasnoyarsk, Russia

S. Y Vetrov

Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Siberian Federal University

Krasnoyarsk, Russia; Krasnoyarsk, Russia

D. P Fedchenko

Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Siberian Federal University

Krasnoyarsk, Russia; Krasnoyarsk, Russia

I. V Timofeev

Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences”; Siberian Federal University

Email: Ivan-V-Timofeev@ya.ru
Krasnoyarsk, Russia; Krasnoyarsk, Russia

References

  1. Бреховских Л. М. Волны в слоистых средах. М.: Наука, 1973. 343 с.
  2. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals: Molding the Flow of light. Princeton Univ., 1995. P. 137.
  3. Yablonovich E. // Phys. Rev. Lett. 1987. V. 58. P. 2058.
  4. Kushwaha M.S., Halevi P., Dobrzynski L. et al. // Phys. Rev. 1993. V. 71. P. 2022.
  5. Vasseur J.O., Djafari-Rouhani B., Halevi P. et al. // Phys. Cond. Matter. 1994. V. 6. P. 8759.
  6. Sigalas M.M., Economou E.N. // Solid State Commun. 1993. V. 86. P. 141.
  7. Sigalas M.M., Economou J. // Sound Vibrat. 1992. V. 158. P. 377.
  8. Шабанов В.Ф., Вепров С.Я., Шабанов А.В. Оптика реальных фотонных кристаллов. Жидкохристаллические дефекты, неоднородности. Новосибирск: Изд. СО РАН, 2005. С. 209.
  9. Вепров С.Я., Бисбаев Р.Г., Тимофеев И.В. // ЖЭТФ. 2013. T. 144. № 6. С. 1129; Vetrov S.Ya., Bikbaev R.G., Timofeev I.V. // JETP. 2013. V. 117. No. 6. P. 988.
  10. Тимофеев И.В., Вепров С.Я. // Письма в ЖЭТФ. 2016. T. 104. № 6. P. 393; Timofeev I.V., Vetrov S.Y. // JETP Lett. 2016. V. 104. No. 6. C. 380.
  11. Pankin, P.S., Vetrov S.Y., Timofeev I.V. // PIERS. IEEE. 2016. P. 4571.
  12. Camley R.E., Djafari-Rouhani B., Dobrzynski L. et al. // Phys. Rev. B. 1983. V. 27. No. 12. P. 7318.
  13. Mei X., Ke M., He Z. et al. // Science & Education. 2012. V. 27. No. 2. P. 374.
  14. Korozlu N., Kaya O.A., Cleek A. et al. // JASA. 2018. V. 143. No. 2. P. 756.
  15. Smith M., de Sterke C.M., Wolff C. et al. // Phys. Rev. B. 2017. V. 96. No. 6. Art. No. 064114.
  16. Pochi Y., Amnon Y., Chi-Shain H. // California Institute of Technology. 1976. P. 91125.
  17. Torres M., Montero de Espinosa F.R., Garcia-Pablos D. // Phys. Rev. Lett. 1999. V. 82. No. 15. P. 3054.
  18. Timofeev I.V., Lin Y-T., Ganyakov V.A. et al. // Phys. Rev. E. 2012. V. 85. No. 1. Art. No. 011705.
  19. Рабинович М.Н., Трубецкое Д.Н. Введение в теорию колебаний и волн. НИЦ «Регулярная и хаотическая динамика», 2000. 560 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences