COMBINED PROBE AND OPTICAL LOCAL MEASUREMENTS IN A HOLLOW CATHODE DISCHARGE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using a moving Langmuir probe assembly and a fiber-optic sensor, simultaneous measurements of the electron energy distribution function EEDF f(u), their concentration Ne, and the emission spectra I(λ) of plasma with spatial resolution were performed in a discharge in inert gases at low pressure supported by a hollow cathode. The dynamic range of f(u) measurements is 5 orders of magnitude, while the observed ranges of Ne and I(λ) variations in space are up to 3 orders of magnitude. It was found that even small additions of Xe to He lead to significant changes in the EEDF shape, including in space. Within the framework of the coronal model (CM), the spatial profiles I(λ) of a number of lines of the Xe atom in a discharge in a He:Xe (99:1) mixture were calculated from the measured f(u) and Ne. Even in the approximation of this simple model, the results of the intensity calculations, on the whole, agree satisfactorily with the measured ones. A common method for measuring electron temperatures from the relative intensities of spectral lines of atomic transitions is discussed.

作者简介

A. Bernatskiy

Р.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: bernatskiyav@lebedev.ru
Moscow, Russia

I. Draganov

Р.N. Lebedev Physical Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: draganov.i@lebedev.ru
Moscow, Russia; Dolgoprudny, Russia

I. Kochetov

Р.N. Lebedev Physical Institute of the Russian Academy of Sciences; Troitsk Institute for Innovation and Fusion Research

Email: kochet@triniti.ru
Moscow, Russia; Moscow, Russia

V. Ochkin

Р.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: ochkinvn@lebedev.ru
Moscow, Russia

参考

  1. Лохте-Хольтгревен В. Методы исследования плазмы. Спектроскопия, лазеры, зонды / [Ю. Рихтер [и др.]] / Под ред. В. ЛохтеХольтгревена; пер. с англ. под ред. С.Ю. Лукьянова М.: Мир, 1971.
  2. Ochkin V.N. Spectroscopy of Low-Temperature Plasma. New York: WILEY-VCH, 2009. https://doi.org/10.1002/9783527627509
  3. Bernatskiy A.V., Kochetov I.V., Ochkin V.N. // Plasma Physics Reports. 2020. V. 46. P. 874. https://doi.org/10.1134/S1063780X20090020
  4. Словецкий Д.И. Механизмы химических реакций в неравновесной плазме. М.: Наука, 1980.
  5. Антонов Е.Е., Корчевой Ю.П., Лукашенко В.И. // Теплофизика высоких температур. 1976. V. 14. P. 1151.
  6. Bernatskiy A.V., Ochkin V.N., Bafoev R.N. // Bulletin of the Lebedev Physics Institute. 2016. V. 43. P. 195. https://doi.org/10.3103/S1068335616060038
  7. Bernatskiy A.V., Ochkin V.N., Kochetov I.V. // Journal of Physics D: Applied Physics. 2016. V. 49. 395204. https://doi.org/10.1088/0022-3727/49/39/395204
  8. Bernatskiy A.V., Kochetov I.V., Ochkin V.N. // Physics of Plasmas. 2018. V. 25. 083517. https://doi.org/10.1063/1.5042839
  9. Bernatskiy A.V., Ochkin V.N., Afonin O.N., Antipenkov A.B. // Plasma Physics Reports. 2015. V. 41. P. 705–714. https://doi.org/10.1134/S1063780X15090032
  10. Andreev S.N., Bernatskiy A.V., Draganov I.I., Kochetov I.V., Ochkin V.N. // Plasma Physics Reports. 2022. V. 48. P. 1273. https://doi.org/10.1134/S1063780X22601043
  11. Cox T.I., Deshmukh V.G.I., Hope D.A.O., Hydes A.J., Braithwaite N.S.J., Benjamin N.M.P. // Journal of Physics D: Applied Physics. 1987. V. 20. P. 820. https://doi.org/10.1088/0022-3727/20/7/002
  12. Avaria G., Lunk A., Schr¨oder A., Vinogradov I.P. // Plasma Processes and Polymers. 2009. V. 6. P. S352–S356. https://doi.org/10.1002/ppap.200930804
  13. Gizzatullin A.R., Zhelonkin Y.O., Voznesencky E.F., Gizzatullin A.R. // Journal of Physics: Conference Series. 2019. V. 1328. 012025. https://doi.org/10.1088/1742-6596/1328/1/012025
  14. Khattak Z.I., Khan A.W., Rahman A.U., Shafiq M. // Plasma Physics Reports. 2020. V. 46. P. 800–814. https://doi.org/10.1134/S1063780X20080036
  15. Park J.M., Song M.A., Chung T.H. // Journal of the Korean Physical Society. 2012. V. 61. P. 376–386. https://doi.org/10.3938/jkps.61.376
  16. Yousif F.B., Mondragon A.B. // IEEE Transactions on Plasma Science. 2012. V. 40. P. 1715–1723. https://doi.org/10.1109/TPS.2012.2192453
  17. Sahu B.B., Han J.G., Hori M., Takeda K. // Journal of Applied Physics. 2015. V. 117. 023301. https://doi.org/10.1063/1.4905541
  18. Younus M., Rehman N.U., Shafiq M., Hussain S.S., Zakaullah M., Zaka-ul-Islam M // Physics of Plasmas. 2016. V. 23. 083521. https://doi.org/10.1063/1.4960999
  19. Mathioudaki S., Vandenabeele C., Tonneau R., Pflug A., Lucas S. // Journal of Vacuum Science & Technology A. 2019. V. 37. 031301. https://doi.org/10.1116/1.5064690
  20. Abbas Q.A., Ahmed A.F., Mutlak F.A.H. // Optik. 2021. V. 242. 167260. https://doi.org/10.1016/j.ijleo.2021.167260
  21. Konrad-Soare C.T., Enescu F., Dimitriu D.G., Dobromir M., Teodorescu-Soare E.G., Mazzanti F., Irimiciuc S.A., Ionita C., Schrittwieser R. // Plasma Sources Science and Technology. 2021. V. 30. 085006. https://doi.org/10.1088/1361-6595/ac0fc8
  22. Shumeiko A.I., Telekh V.D., Ryzhkov S.V. // Symmetry. 2022. V. 14. P. 1983. https://doi.org/10.3390/sym14101983
  23. Wang Y., Zhou H.S., Li X.C., Liu H.D., Zhu Y.W., Luo G.N. // Physica Scripta. 2024. V. 99. 065604. https://doi.org/10.1088/1402-4896/ad4290
  24. Oshio Y., Masuyama S., Watanabe H., Funaki I. // Journal of Electric Propulsion. 2025. V. 4. P. 15. https://doi.org/10.1007/s44205-025-00115-3
  25. Sigeneger F., Winkler R. // The European Physical Journal Applied Physics. 2002. V. 19. P. 211–223. https://doi.org/10.1051/epjap:2002068
  26. Hippler R., Cada M., Hubicka Z. // Plasma Sources Science and Technology. 2021. V. 30. 045003. https://doi.org/10.1088/1361-6595/abe0cc
  27. Yang Y., Wu Z., Huang T. // Plasma Sources Science and Technology. 2024. V. 33. 125008. https://doi.org/10.1088/1361-6595/ad99fe
  28. Poluektov N.P., Tsar’gorodsev Y.P., Usatov I.I., Evstigneev A.G., Kamyschov I.A. // Plasma Sources Science and Technology. 2015. V. 24. 035009. https://doi.org/10.1088/0963-0252/24/3/035009
  29. Bernatskiy A.V., Draganov I.I., Dyatko N.A., Kochetov I.V., Ochkin V.N. // Plasma Chemistry and Plasma Processing. 2024. V. 44. P. 651–666. https://doi.org/10.1007/s11090-023-10378-z
  30. Bernatskiy A.V., Draganov I.I., Dyatko N.A., Kochetov I.V., Lagunov V.V., Ochkin V.N. // Plasma Chemistry and Plasma Processing. 2025. V. 45. P. 993. https://doi.org/10.1007/s11090-025-10552-5
  31. Andreev S.N., Bernatskiy A.V., Ochkin V.N. // Vacuum. 2020. V. 180. 109616. https://doi.org/10.1016/j.vacuum.2020.109616
  32. Andreev S.N., Bernatskiy A.V., Ochkin V.N. // Vacuum. 2022. V. 206. 111514. https://doi.org/10.1016/j.vacuum.2022.111514
  33. Bernatskiy A.V., Draganov I.I., Dyatko N.A., Kochetov I.V., Ochkin V.N. // Vacuum. 2024. V. 226. 113338. https://doi.org/10.1016/j.vacuum.2024.113338
  34. Bernatskiy A.V., Draganov I.I., Dyatko N.A., Kochetov I.V., Lagunov V.V., Ochkin V.N. // Vacuum. 2025. V. 235. 114162. https://doi.org/10.1016/j.vacuum.2025.114162
  35. Bernatskiy A.V., Draganov I.I., Kochetov I.V., Lagunov V.V., Ochkin V.N. // Vacuum. 2024. V. 225. 113279. https://doi.org/10.1016/j.vacuum.2024.113279
  36. Gamez G., Frey D., Michler J. // Journal of Analytical Atomic Spectrometry. 2012. V. 27. P. 50–55. https://doi.org/10.1039/c1ja10241a
  37. Florkowski M. // Measurement. 2020. V. 164. 108070. https://doi.org/10.1016/j.measurement.2020.108070
  38. Apetrei R., Alexandroaei D., Luca D., Balan P., Ionita C., Schrittwieser R., Popa G. // Japanese Journal of Applied Physics. 2006. V. 45. P. 8128. https://doi.org/10.1143/JJAP.45.8128
  39. Lazzaroni C., Chabert P., Rousseau A., Sadeghi N. // Journal of Physics D: Applied Physics. 2010. V. 43. 124008. https://doi.org/10.1088/0022-3727/43/12/124008
  40. Dixon S., Charles C., Dedrick J., Gans T., O’Connell D., Boswell R. // Applied Physics Letters. 2014. V. 105. 014104. https://doi.org/10.1063/1.4889916
  41. Ismagilov R.R., Loginov A.B., Malykhin S.A., Kleshch V.I., Obraztsov A.N. // Instruments and Experimental Techniques. 2021. V. 64. P. 700. https://doi.org/10.1134/S0020441221040175
  42. Dyachenko A.A., Pinchuk M.E. // Journal of current research in instrumentation. 2024. V. 3. P. 56-62. https://doi.org/10.31799/2949-0693-2024-1-56-62
  43. Godyak V.A., Alexandrovich B.M. // Journal of Applied Physics. 2015. V. 118. 233302. https://doi.org/10.1063/1.4937446
  44. NIST Atomic Spectra Database Lines Data. https://physics.nist.gov/PhysRefData/ASD/lines_form.html
  45. Heylen A.E.D., Lewis T.J. // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1963. V. 271. P. 531. https://doi.org/10.1098/rspa.1963.0034
  46. Hashiguchi S. // IEEE Transactions on Plasma Science. 1991. V. 19. P. 297. https://doi.org/10.1109/27.106827
  47. Roberts T.D., Burch D.S. // Physical Review. 1966. V. 142. P. 100. https://doi.org/10.1103/PhysRev.142.100
  48. Mizeraczyk J., Urbanik W. // Journal of Physics D: Applied Physics. 1983. V. 16. P. 2119. https://doi.org/10.1088/0022-3727/16/11/015
  49. Mizeraczyk J. // Journal of Physics D: Applied Physics. 1984. V. 17. P. 1647. https://doi.org/10.1088/0022-3727/17/8/017
  50. Mizeraczyk J. // Zeitschrift f ¨ur Naturforschung A. 1987. V. 42. P. 587. https://doi.org/10.1515/zna-1987-0611
  51. Fischer R., Dose V. // Plasma physics and controlled fusion. 1999. V. 41. P. 1109 https://doi.org/10.1088/0741-3335/41/9/304
  52. Biagi-v8.97 (Magboltz version v8.97) database, www.lxcat.net, retrieved on March 26, 2025.
  53. BSR (Quantum-mechanical calculations by O. Zatsarinny and K. Bartschat) database, www.lxcat.net, retrieved on March 26, 2025.
  54. Andreev S.N., Bernatskiy A.V., Dyatko N.A., Kochetov I.V., Ochkin V.N. // Plasma Physics Reports. 2023. V. 49. P. 1031. https://doi.org/10.1134/S1063780X23600846

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025