Numerical study of structural parameters of dust particle chains of different lengths

Cover Page

Cite item

Full Text

Abstract

The results of a numerical study of the configuration of chains of dust particles levitating in a gasdischarge plasma are presented. The studies have been carried out using an iterative model that self-consistently describes the motion of ions and dust particles under the action of an external electric field, an electric field (Coulomb) of each charged dust particle, a field of the plasma space charge (ions and electrons), which screens the charges of dust particles, and gravity for dust particles. The structural parameters of the chains of dust particles were calculated for different numbers of particles in them. It was found that when new particles are added to the chain, the center of the chain rises above the lower electrode. This is due to both a decrease in the charges of the lower dust particles due to the focusing of positively charged ions behind the upper particle, and a significant decrease in the ion drag force on the lower particles of the chain as a result of structural rearrangement of the entire chain. It is shown that the reduced charge of the chains decreases, and the reduced length of the chains has a maximum depending on the number of particles.

About the authors

M. V. Sal’nikov

Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: salnikovitsbras@gmail.com
Russian Federation, Novosibirsk

A. V. Fedoseev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
Russian Federation, Moscow

M. M. Vasil’ev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
Russian Federation, Moscow

O. F. Petrov

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: salnikovitsbras@gmail.com
Russian Federation, Moscow

References

  1. Shukla P.K. // Phys. Plasmas. 2001. V. 8. P. 1791.
  2. Merlino R.L., Goree J.A. // Phys. Today. 2004. V. 57. P. 32.
  3. Fortov V.E., Ivlev A. V., Khrapak S.A., Khrapak A.G., Morfill G.E. // Phys. Rep. 2005. V. 421. P. 1.
  4. Ishihara O. // J. Phys. D. 2007. V. 40. P. 121.
  5. Ludwig P., Thomsen H., Balzer K., Filinov A., Bonitz M. // Plasma Phys. Controlled Fusion, 2010. V. 52. P. 124013.
  6. Selwyn G.S. // Plasma Sources Sci. Technology. 1994. V. 3. P. 340.
  7. Melzer A., Trottenberg T., Piel A. // Phys. Lett. A. 1994. V. 191. P. 301.
  8. Chu J.H., Lin I. // Phys. Rev. Lett., 1994. V. 72. P. 4009.
  9. Жаховский В.В., Молотков В.И., Нефедов А.П., Торчинский В.М., Храпак А.Г., Фортов В.Е. // Письма ЖЭТФ. 1997. Т. 66. С. 392.
  10. Petrov O.F., Statsenko K.B., Vasiliev M.M. // Sci. Rep. 2022. V. 12. P. 8618.
  11. Boltnev R.E., VasilievM.M., Petrov O.F. // Sci. Rep. 2019. V. 9. P. 3261.
  12. Petrov O.F., Boltnev R.E., VasilievM.M. // Sci. Rep. 2022. V. 12. P. 6085.
  13. Karasev V. Yu., DzlievaE. S., Eikhval’d A.I. // Geometrical and Applied Optics. 2006. V. 101. P. 493.
  14. Carmona-Reyes J., Schmoke J., CookM., Kong J., Hyde T.W. // 16th IEEE Internat. Pulsed Power Confer., Albuquerque, NM, USA, 2007. P. 1581.
  15. Hartmann P., Matthews L., Kostadinova E., Hyde T., RosenbergM. // APS Annual Gaseous Electronics Meeting Abstracts, MW1.009
  16. Takahashi K., Oishi T., Shimomai K.-I., Hayashi Y., Nishino S. // Phys. Rev. E. 1998. V. 58 P. 7805.
  17. Hyde T.W., Kong J., Matthews L.S. // Phys. Rev. E. V. 2013. V. 87. P. 053106.
  18. Polyakov D.N., Vasilyak L.M., Shumova V.V. // Surface Engineering and Applied Electrochemistry. 2015. V. 51. P. 143.
  19. Yaroshenko, V., Pustylnik, M. // Molecules. V. 26, 308, 2021.
  20. Ivlev A.V., Thoma M.H., Rath C., Joyce G., Morfill G.E. // Phys. Rev. Lett. 2011. V. 106. P. 155001.
  21. FedoseevA.V., Litvinenko V.V., VasilievaE.V., Vasiliev M.M., Petrov O.F. // Sci. Rep. 2024. V. 14 . P. 13252.
  22. Yousef R., Chen M., Matthews L.S., Hyde T.W. // arXiv Preprint. 2016. 1607.03177.
  23. Miloch W.J., BlockD. // Phys. Plasmas. 2012. V. 19. P. 123703.
  24. Block D., Miloch J.W. // Plasma Phys. Controlled Fusion. 2015. V. 57. P. 014019.
  25. Hutchinson I.H. // Phys. Plasmas. 2011. V. 18. P. 032111.
  26. Matthews L.S., Sanford D.L., Kostadinova E.G., Ashrafi K.S., Guay E., Hyde T.W. // Phys. Plasmas. 2020. V. 27. P. 023703.
  27. Vermillion K., Sanford D., Matthews L., Hartmann P., Rosenberg M., Kostadinova E., Carmona-Reyes J., Hyde T., Lipaev A.M., Usachev A.D., Zobnin A.V., Petrov O.F., Thoma M.H., PustylnikM.Y., ThomasH.M., Ovchinin A. // Phys. Plasmas. 2022. V. 29. P. 023701.
  28. Fedoseev A.V., Salnikov M.V., Vasiliev M.M., Petrov O.F. // Phys. Rev. E. 2022. V. 106. P. 0252042022.
  29. Fedoseev A.V., Salnikov M.V., Vasiliev M.M., Petrov O.F. // Phys. Plasmas. 2024. V. 31. P. 063703.
  30. Sukhinin G.I., Fedoseev A.V., Salnikov M.V., Rostom A., Vasiliev M.M., Petrov O.F. // Phys. Rev. E. 2017. V. 95. P. 063207.
  31. Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.I., Petrov O.F. // Physics-Uspekhi. 2004. V. 47. P. 447.
  32. Lipaev A.M., Molotkov V.I., Nefedov A.P., Petrov O.F., Torchinskii V.M., Fortov V.E., Khrapak A.G., Khrapak S.A. // J. Exp. Theor. Phys. 1997. V. 85. P. 1110.
  33. Павлов С.И., Дзлиева Е.С., Дьячков Л.Г., Новиков Л.А., Балабас М.В., Карасев В.Ю. // Физика плазмы. 2023. Т. 49. С. 995.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences