Ion-sound waves during the interaction of meteoroid tails with the Earth’s ionosphere

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The ion-acoustic instability in the tails of meteoroids as a result of their passage through the Earth’s atmosphere is studied and the conditions under which it develops are given. The development of this instability occurs as a result of the relative motion of the plasma of meteoroid tails and the dusty plasma of the Earth’s ionosphere. Dust, in turn, creates conditions when this instability can develop in a situation of approximately equal ion and electron temperatures, which is observed in the plasma–dust system under consideration. The mechanism of the excitation of ion-sound waves as a result of the development of the ionacoustic instability in meteoroid tails is shown. The growth rates of the ion-acoustic instability and the characteristic times of its development are found. It is shown that the instability has time to develop during the time of passage of a meteoroid body in the Earth’s atmosphere and the formation of a meteoroid trail, which has values much greater than the time of development of ion-acoustic instability in the system under consideration. The wave vectors and velocities of meteoric bodies, at which the development of the ion-acoustic instability is expected, are found. It is noted that the instability can reach a nonlinear regime at possible large wave amplitudes.

About the authors

T. I. Morozova

Space Research Institute, Russian Academy of Sciences

Author for correspondence.
Email: timoroz@yandex.ru
Russian Federation, Moscow, 117997

S. I. Popel

Space Research Institute, Russian Academy of Sciences

Email: timoroz@yandex.ru
Russian Federation, Moscow, 117997

References

  1. Бронштэн В.А. Физика метеорных явлений. М.: Наука, 1981. 416 c.
  2. Морозова Т.И., Попель С.И. // Физика плазмы. 2020. Т. 46. С. 993.
  3. Морозова Т.И., Копнин С.И., Попель С.И. // Физика плазмы. 2015. Т. 41. С. 867.
  4. Борисов Н.Д., Копнин С.И., Попель С.И., Морозова Т.И. // Физика плазмы. 2019. Т. 45. C. 346.
  5. Morozova T.I., Popel S.I. // J. Phys.: Conf. Ser. 2021. V. 1787. P. 012052.
  6. Morozova T.I., Kopnin S.I., Popel S.I., Borisov N.D. // Phys. Plasmas. 2021. V. 28. P. 033703.
  7. Морозова Т.И., Копнин С.И., Попель С.И. // Геомагнетизм и аэрономия. 2021. T.61. С. 794.
  8. Морозова Т.И., Попель С.И. // Физика плазмы. 2022. T. 48. С. 635. doi: 10.31857/S0367292122600406.
  9. Морозова Т.И., Попель С.И. // Физика плазмы. 2022. T. 48. C. 924. doi: 10.31857/S0367292122600777
  10. Морозова Т.И., Попель С.И. // Физика плазмы. 2023. Т. 49. C. 42. doi: 10.31857/S0367292122601199.
  11. Shukla P.K., Silin V.P. // Physica Scripta. 1992. V. 45. P. 508. doi: 10.1088/0031-8949/45/5/015.
  12. Keay C. S. L. // Science. 1980. V.210. P. 11.
  13. Verveer P., Bland A., Bevan A. W. R. // 63rd Ann. Meteoritical Soc. Meeting. 2000. P. 5233.
  14. Zgrablić G., Vinković D., Gradečak S., Kovačić D., Biliskov N., Grbac N., Andreić Ž., Garaj S. // J. Geophys. Res. 2002. V. 107. P. SIA 11-1. doi: 10.1029/2001JA000310.
  15. Trautner R., Koschny D., Witasse O., Zender J., Knöfel A. // Proceed. Asteroids, Comets, Meteors – ACM 2002. International Conference. 2002 / Ed. Warmbein, B. Noordwijk, Netherlands: ESA, 2002. P. 161.
  16. Spalding R., Tencer J., Sweatt W., Conley B., Hogan R., Boslough M., Gonzales G., Spurný P. // Sci. Reps. 2017. V. 7. P. 41251. doi: 10.1038/srep41251.
  17. Михалев А. В., Белецкий А.Б., Васильев Р.В., Еселевич М.В., Иванов К.И., Комарова Е.С., Подлесный А.В., Подлесный С.В., Сыренова Т.Е. // Солнечно-земная физика. 2019. Т. 5. С. 130.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences