Features of background acoustic disturbances in high-speed wind tunnels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Based on the hot-wire method for studying the fluctuations of compressible flows, the issues of determining the acoustic characteristics of the flow in the test sections of wind tunnels at transonic and supersonic speeds are considered. It is shown that at supersonic flows, in addition to the Mach waves described by Kovasznay, generated by stationary sources of disturbances on the walls of the test sections, and Mach waves generating the most intense fluctuations, distributed and moving in a supersonic turbulent boundary, described by Laufer, there may be Mach waves, the sources of which is a turbulent boundary layer. Using the hot-wire approach, it is possible to determine the characteristics of each type of these waves and their sources. It is also established that simple sound waves can be both produced by the turbulent boundary layer and those penetrating into the test section from sources located in the prechamber of the wind tunnel through the critical section of the Laval nozzle. In wind tunnels of high subsonic speeds, acoustic disturbances are produced from sound waves identified by intensity, direction and spectral composition using developed methods of thermal anemometry. The characteristics of acoustic disturbances (intensity, direction, location of sources) determined using the hot-wire allow them to be purposefully preserved or reduced, or their influence on phenomena under investigation can be taken into account. The article was prepared based on the materials of the report at the 10th Russian conference “Computational experiment in aeroacoustics and aerodynamics”, September 16–21, 2024, Svetlogorsk, Kaliningrad region, http://ceaa.imamod.ru/.

About the authors

V. A. Lebiga

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: lebiga@itam.nsc.ru
Institutskaya str. 4/1, Novosibirsk, 630090 Russia

D. S. Mironov

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: lebiga@itam.nsc.ru
Institutskaya str. 4/1, Novosibirsk, 630090 Russia

A. Yu. Pak

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Author for correspondence.
Email: lebiga@itam.nsc.ru
Institutskaya str. 4/1, Novosibirsk, 630090 Russia

References

  1. Morkovin M. Fluctuations and hot-wire anemometry in compressible flows. AGARDograph, № 24, 1956.
  2. Kovasznay L.S.G. The Hot-Wire Anemometer in Supersonic Flow // J.A.S. 1950. V. 17. № 9. P. 565–572.
  3. Kovasznay L.S.G. Turbulence in Supersonic Flow // J.A.S. 1953. V. 20. № 10. P. 657–682.
  4. Лебига В.А. Термоанемометрия сжимаемых потоков. Новосибирск: Изд-во НГТУ, 1997. 81 с.
  5. Laufer J. Aerodynamic Noise in Supersonic Wind Tunnels // J.A.S. 1961. V. 28. № 9. P. 685–692.
  6. Лебига В.А. Термоанемометр в сжимаемом дозвуковом потоке // Изв. АН СССР. Сер. Механика жидкости и газа. 1991. № 6. C. 160–166.
  7. Зиновьев В.Н., Лебига В.А. Измерение пульсаций термоанемометром при больших дозвуковых скоростях // Журн. прикладной механики и технической физики. 1988. № 3. С. 80–84.
  8. Лебига В.А., Зиновьев В.Н., Пак А.Ю. Применение термоанемометра для измерения характеристик акустических волн, распространяющихся в сжимаемых потоках // Теплофизика и аэромеханика. 2002. № 3. С. 339–349.
  9. Копьев В.Ф., Чернышев С.А. Анализ вторичного звукового излучения в акустической аналогии с оператором распространения, содержащим вихревые моды // Акуст. журн. 2022. Т. 68. № 6. С. 647–669.
  10. Юдин М.А., Копьев В.Ф., Чернышев С.А., Фараносов Г.А., Демьянов М.А., Бычков О.П. Об эволюции системы ударных волн, создаваемых лопатками вентилятора двигателя // Акуст. журн. 2024. Т. 70. № 3. С. 47–57.
  11. Башкатов В.В., Остриков Н.Н. Исследование влияния нелинейного режима работы сотовых ЗПК при высоких уровнях звукового давления на распространение звуковых волн в цилиндрическом канале с потоком // Акуст. журн. 2024. Т. 70. № 1. С. 11–20.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences