Asymptotic evaluation of three-dimensional integrals with singularities in application to wave phenomena
- Authors: Shanin A.V.1, Laptev A.Y.1
-
Affiliations:
- Moscow State University
- Issue: Vol 71, No 4 (2025)
- Pages: 504-520
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://rjraap.com/0320-7919/article/view/690834
- DOI: https://doi.org/10.31857/S0320791925040022
- EDN: https://elibrary.ru/vopoie
- ID: 690834
Cite item
Abstract
We consider a three-dimensional Fourier integral in which the exponent in the exponential factor is the product of some phase function and a large parameter. The asymptotics of this integral is sought when the large parameter tends to infinity. In the one-dimensional case, the asymptotics of such an integral is constructed by the points of stationary phase and singularities of the integrand. The three-dimensional case is more complicated: special points such as points of stationary phase in the domain, on singularity, on the crossing of singularities, points of triple crossing of singularities, and also conical points of the singularities, can contribute to the asymptotics. For all these types of singularities, topological conditions for the existence of nonzero asymptotics are constructed, and the asymptotics themselves are derived. The proposed technique is tested on the example of the classical problem of Kelvin waves on the surface of a deep fluid behind a towed body.
About the authors
A. V. Shanin
Moscow State University
Author for correspondence.
Email: laptev97@bk.ru
Москва, 119991 Россия
A. Yu. Laptev
Moscow State University
Email: laptev97@bk.ru
Москва, 119991 Россия
References
- Martin P.A. Kelvin's method of stationary phase? // Wave Motion. 2025. V. 134. P. 103481.
- Федорюк М.В. Метод перевала. М.: Наука, 1977.
- Mironov M.A., Shanin A.V., Korolkov A.I., Kniazeva K.S. Transient processes in a gas/plate structure in the case of light loading // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021. V. 477. P. 20210530.
- Assier R.C., Shanin A.V., Korolkov A.I. A contribution to the mathematical theory of diffraction: A note on double fourier integrals // Quarterly Journal of Mechanics and Applied Mathematics. 2022. V. 76. № 1. P. 1–47.
- Shanin A.V., Assier R.C., Korolkov A.I., Makarov O.I. Double Floquet-Bloch transforms and the far-field asymptotics of Green's functions tailored to periodic structures // Physical Review B. 2024. V. 110. № 2. P. 024310.
- Poincare H. Sur la diffraction des ondes electriques: ? propos d'un article de M. Macdonald // Proceedings of the Royal Society of London. 1904. V. 72. № 477–486. P. 42–52.
- Павлов В.И., Сухоруков А.И. Переходное излучение акустических волн // Успехи физ. наук. 1985. Т. 147. № 1. С. 83–115.
- Ерофеев В.И., Колесов Д.А., Лисенкова Е.Е. Особенности генерации волн источником, движущимся по одномерной гибкой направляющей, лежащей на упруго-инерционном основании // Акустич. журн. 2016. Т. 62. № 6. С. 639–647.
- Руденко О.В., Гусев В.А. Движущийся объект: спектры сигналов пассивной, активной локации и переходное излучение // Акустич. журн. 2020. Т. 66. № 6. С. 599–609.
- Thomson W. On ship waves // Proceedings of the institution of mechanical engineers. 1887. V. 38. № 1. P. 409–434.
- Lord Kelvin. Deep sea ship-waves // Proceedings of the royal society of Edinburgh. 1906. V. 25. № 2. P. 1060–1084.
- Lamb H. LXV. On wave-patterns due to a travelling disturbance // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1916. V. 31. № 186. P. 539–548.
- Lamb H. Hydrodynamics. New York, Dover Publications, 1945.
- Stoker J.J. Water waves: The mathematical theory with applications. Interscience Publishers, Inc., New York, 1957.
- Wehausen J.V., Laitone E.V. Surface waves. Fluid Dynamics/Str?mungsmechanik, Berlin, Heidelberg: Springer Berlin Heidelberg, 1960. P. 446–778.
- Liu M., Tao M. Transient ship waves on an incompressible fluid of infinite depth // Physics of Fluids. 2001. V. 13. № 12. P. 3610–3623.
- Шабат Б.В. Введение в комплексный анализ. Ч. 2. Функции нескольких переменных. М.: Наука, 1992.
- Huybrechs D., Vandewalle S. The construction of cubature rules for multivariate highly oscillatory integrals // Mathematics of computation. 2007. V. 76. № 260. P. 1955–1980.
- Chapman C.J. The wavenumber surface in blade–wortex interaction // Proceedings of the IUTAM symposium on diffraction and scattering in fluid mechanics and elasticity, Manchester, UK 2000, ed. by Abrahams I.D., Martin P.A., Simon M.J. 2002. P. 169–178.
Supplementary files
