Diffusion coefficients of Al2Cl7 in low temperature chloroaluminate melt based on triethylamine hydrochloride

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

With the growing demand for renewable energy sources, much of the research in the battery industry is focused on creating safe and high-capacity energy storage systems that can handle high current loads using inexpensive and readily available materials. The aluminum-ion batteries (AIB) are considered as one of the most promising systems. Such materials as aluminum metal, carbon materials and chloroaluminate ionic liquids are used as anode, cathode and electrolyte, respectively. A low-temperature chloroaluminate melt based on triethylamine hydrochloride (Et3NHCl) is promising and inexpensive electrolytes for AIBs. This melt has the ability to reversibly precipitate/dissolve aluminum metal due to the presence of the Al2Cl7 ion in it. However, the diffusion of Al2Cl7 ions in the Et3NHCl–AlCl3 system has not been studied previously. In the presented work, the concentration dependence of the diffusion coefficients of the Al2Cl7 anion was studied using chronopotentiometry in the concentration range N = 1.3–1.95 (where N is the molar ratio of aluminum chloride to organic salt). It was shown that diffusion coefficients increase with aluminum chloride content growth in the studied melt: from 1.71·10–7 (N = 1.3) to 4.50·10–7 cm2·s–1 (N = 1.95). This behavior can be caused by the viscosity decrease of the melts with Al2Cl7concentration growth. Based on the obtained results it can be concluded that Et3NHCl–AlCl3 with N = 1.95 is the most suitable electrolyte for AIB. Moreover, it was established that the electrochemical reduction of the Al2Cl7 on the surface of the aluminum electrode is complicated by the nucleation process, which has the lowest overvoltage at N = 1.95.

Авторлар туралы

A. Borozdin

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Хат алмасуға жауапты Автор.
Email: v.elterman@ihte.ru
Ресей, Ekaterinburg

V. Elterman

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: v.elterman@ihte.ru
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Lee D., Lee G., Tak Y. Hypostatic Instability of Aluminum Anode in Acidic Ionic Liquid for Aluminum-Ion Battery // Nanotechnology. 2018. 29. № 36. 36LT01.
  2. Elia G.A., Marquardt K., Hoeppner K., Fantini S., Lin R., Knipping E., Peters W., Drillet J.-F., Passerini S., Hahn R. An overview and future perspectives of aluminium batteries // Adv. Mater. 2016. 28. № 35. P. 7564–7579.
  3. Choi S., Go H., Lee G., Tak Y. Electrochemical Properties of an Aluminum Anode in an Ionic Liquid Electrolyte for Rechargeable Aluminum-Ion Batteries // Phys. Chem. Chem. Phys. 2017. 19. № 13. P. 8653–8656.
  4. Zhang B., Zhang W., Jin H., Wan J. Research Progress of Cathode Materials for Rechargeable Aluminum Batteries in AlCl3 /[EMIm]Cl and Other Electrolyte Systems // Chemistry Select. 2023. 8. № 10. E202204575.
  5. Fannin A.A., Floreani D.A., King L.A., Landers J.S., Piersma B.J., Stech D.J., Vaughn R.L., Wilkes J.S., Williams J.L. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities // J. Phys. Chem. 1984. 88. № 12. P. 2614–2621.
  6. Takahashi S., Curtiss L.A., Gosztola D., Koura N., Saboungi M.-L. Molecular orbital calculations and raman measurements for 1-ethyl-3-methylimidazolium chloroaluminates // Inorg. Chem. 1995. 34. № 11. P. 2990–2993.
  7. Elterman V.A., Shevelin P.Yu., Yolshina L.A., Borozdin A.V. Physicochemical characteristics of 1-ethyl- and 1-butyl-3-methylimidazolium chloroaluminate ionic liquids // Journal of Molecular Liquids. 2022. 364. 120061.
  8. Lin M.-C., Gong M., Lu B., Wu Y., Wang D.-Y., Guan M., Angell M., Chen C., Yang J., Hwang B.-J., Dai H. An ultrafast rechargeable aluminium-ion battery // Nature. 2015. 520. № 7547. P. 324–328.
  9. Lipsztajn M., Osteryoung R.A. Increased Electrochemical Window in Ambient Temperature Neutral Ionic Liquids // J. Electrochem. Soc. 1983. 130. № 9. P. 1968–1969.
  10. Gao L., Wang L., Qi T., Li Y., Chu J., Qu J. Electrodeposition of Aluminum from AlCl3/Et3NHCl Ionic Liquids // Acta Physico-Chimica Sinica. 2008. 24. № 6. P. 939–944.
  11. Borozdin A.V., Shevelin P.Yu., Elterman V.A., Yolshina L.A. Electrochemical behavior of aluminum in triethylamine hydrochloride–aluminum chloride ionic liquid // Phys. Chem. Chem. Phys. 2023. 25. № 44. P. 30543–30552.
  12. Xu H., Bai T., Chen H., Guo F., Xi J., Huang T., Cai S., Chu X., Ling J., Gao W., Xu Z., Gao C. Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery // Energy Storage Materials. 2019. 17. P. 38–45.
  13. Gan F., Chen K., Li N., Wang Y., Shuai Y., He X. Low cost ionic liquid electrolytes for rechargeable aluminum/graphite batteries // Ionics. 2019. 25. № 9. P. 4243–4249.
  14. Robinson J., Osteryoung R.A. The electrochemical behavior of aluminum in the low temperature molten salt system n butyl pyridinium chloride: aluminum chloride and mixtures of this molten salt with benzene // J. Electrochem. Soc. 1980. 127. № 1. P.122–128.
  15. Elterman V.A., Shevelin P.Yu., Yolshina L.A., Borozdin A.V. Electrodeposition of aluminium from the chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride // Electrochimica Acta. 2021. 389. P. 138715.
  16. Elterman, V. A., Shevelin, P. Yu., Yolshina, L. A., Borozdin, A. V. Features of aluminum electrodeposition from 1,3-dialkylimidazolium chloride chloroaluminate ionic liquids // Journal of Molecular Liquids. 2022. 351. P. 118693.
  17. Baraboshkin A.N. Elektrokristallizatsiya metallov iz rasplavlennykh soley [Electrocrystallization of metals from molten salts]. M.: Nauka. 1976. [In Russian]
  18. Böttcher R., Mai S., Ispas A., Bund A. Aluminum deposition and dissolution in [EMIm]Cl-based ionic liquids–kinetics of charge–transfer and the rate–determining step // J. Electrochem. Soc. 2020. 167. № 10. P.102516.
  19. Böttcher R., Ispas A., Bund A. Determination of transport parameters in [EMIm]Cl–based ionic liquids – diffusion and electrical conductivity // Electrochimica Acta. 2021. 366. 137370.
  20. Reinmuth W.H. Distortion of chronopotentiograms from double layer and surface roughness effects // Anal. Chem. 1961. 33. № 4. P. 485–487.
  21. Galyus Z. Teoreticheskiye osnovy elektrokhimicheskogo analiza (Theoretical foundations of electrochemical analysis). M.: Mir. 1974. [In Russian]
  22. Xia S., Zhang X.-M., Huang K., Chen Y.-L., Wu Y.-T. Ionic liquid electrolytes for aluminium secondary battery: influence of organic solvents // Journal of Electroanalytical Chemistry. 2015. 757. P.167–175.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024