Anode process on gold in KF–AlF3–Al2O3 melt
- Authors: Nikolaev А.Y.1,2, Suzdaltsev A.V.1,2, Zaikov Y.P.1,2
-
Affiliations:
- Institute of High-Temperature Electrochemistry UB RAS
- Ural Federal University
- Issue: No 3 (2024)
- Pages: 252-262
- Section: Articles
- URL: https://rjraap.com/0235-0106/article/view/662114
- DOI: https://doi.org/10.31857/S0235010624030037
- ID: 662114
Cite item
Abstract
In the conditions of resource saving and carbon footprint reduction, the development of oxygen–releasing anodes for technologies of production of important metals and alloys by electrolysis of molten salts seems to be an urgent task. To determine the degree of “inertness” of a particular anode material, data on the kinetics and mechanism of the anode process on a material not subject to oxidation are required. In this connection, the anodic process on gold in the KF–AlF3–Al2O3 melt for electrolytic aluminum production was investigated by cyclic and square–wave voltammetry methods. The influence of temperature (715 and 775 оC) of the melt, the content of Al2O3 in it (from 0.1 to saturation), as well as the polarization rate (0.05–1 V/s) on the kinetics and some features of the mechanism of the investigated process was determined. An assumption is made that oxygen release on gold without dissolution of the substrate takes place in the region of overvoltages from 0 to 0.8 V. It is shown that the process includes the stages of electrochemical adsorption and desorption of the intermediate product, the first of which is limited by the diffusion of electroactive anions to the anode.
About the authors
А. Yu. Nikolaev
Institute of High-Temperature Electrochemistry UB RAS; Ural Federal University
Email: suzdaltsev_av@ihte.ru
Russian Federation, Yekaterinburg; Yekaterinburg
A. V. Suzdaltsev
Institute of High-Temperature Electrochemistry UB RAS; Ural Federal University
Author for correspondence.
Email: suzdaltsev_av@ihte.ru
Russian Federation, Yekaterinburg; Yekaterinburg
Yu. P. Zaikov
Institute of High-Temperature Electrochemistry UB RAS; Ural Federal University
Email: suzdaltsev_av@ihte.ru
Russian Federation, Yekaterinburg; Yekaterinburg
References
- Olimov N.S., Ganiev I.N., Shirinov M.Ch. Vliyaniye dobavki strontsiya na kinetiku okisleniya promyshlennykh liteynykh alyuminiyevykh splavov AL2, AL4 i AL9 [Influence of strontium addition on oxidation kinetics of industrial cast aluminum alloys AL2, AL4 and AL9] // Rasplavy. 2023. № 3. P. 274–286. [In Russian].
- Skachkov V.M., Pasechnik L.A., Bibanaeva S.A. et al. Sintez i svoystva splavov alyuminiya s perekhodnymi metallami V gruppy [Synthesis and properties of aluminum alloys with transition metals of group V] // Rasplavy. 2022. № 1. P. 82–89. [In Russian].
- Gilev I.O., Shubin A.B., Kotenkov P.V. Thermodynamic properties of binary Al–Y melts // Rus. Met. (Metally). 2022. № 2. P. 115–121.
- Suzdaltsev A.V., Filatov A.A., Nikolaev A. Yu. et al. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide-fluoride melts // Rus. Met. (Metally). 2018. № 2. P. 133–138.
- Kovrov V.A., Khramov A.P., Zaikov Yu.P. et al. Metod opredeleniya skorosti okisleniya metallicheskikh anodov pri elektrolize alyuminiya v rasplavakh KF–AlF3–Al2O3 [Method for determining the oxidation rate of metal anodes during aluminum electrolysis in KF–AlF3–Al2O3 melts] // Rasplavy. 2011. № 6. P. 25–39. [In Russian].
- Tkacheva O.Yu., Kataev A.A., Redkin A.A. et al. Flyusy dlya polucheniya splavov alyuminiy–bor [Fluxes for producing aluminum–boron alloys] // Rasplavy. 2016. № 5. P. 387–396. [In Russian].
- Belyaev A.I., Studentsov Y.E. Elektroliz glinozema s nesgorayemymi (metallicheskimi) anodami [Electrolysis of alumina with non-combustible (metal) anodes] // Legkie Metally. 1936. № 3. P. 15–24. [In Russian].
- Mullabaev A.R., Kovrov V.A., Molchanova N.G. et al. Tsiklicheskaya vol’tamperometriya na platine v rasplavakh LiCl–KCl i LiCl–KCl–Li2O [Cyclic voltammetry on platinum in LiCl–KCl and LiCl–KCl–Li2O melts] // Rasplavy. 2021. № 6. P. 605–617. [In Russian].
- Shishkin A.V., Shishkin V.Y., Salyulev A.B. et al. Electrochemical reduction of uranium dioxide in LiCl–Li2O melt // Atomic Energy. 2021. 131. № 2. P. 77–82.
- Mann V. Kh., Gusev A.O., Simakov D.A. Metod polucheniya alyuminiyevykh splavov [Method for obtaining aluminum alloys]. Patent RU2673597, priority 24.11.2016, published 28.11.2018. [In Russian].
- Rudenko A.V., Kataev A.A., Neupokoeva M.M., Tkacheva O. Yu. Elektroliticheskoye polucheniye splavov alyuminiya v yacheykakh s maloraskhoduyemym metallicheskim anodom i smachivayemym katodom [Electrolytic production of aluminum alloys in cells with a low–consumption metal anode and wettable cathode] // Rasplavy. 2022. № 4. P. 430–440. [In Russian].
- Nikolaev A. Yu., Yasinsky A.S., Suzdaltsev A.V. et al. Vol’tamperometriya v rasplave i suspenziyakh KF–AlF3–Al2O3 [Voltammetry in the KF–AlF3–Al2O3 melt and suspensions] // Rasplavy. 2017. № 3. P. 214–225. [In Russian].
- Rolseth S., Gudbrandsen H., Thonstad J. An inverted aluminum electrolysis cell using a high density electrolyte and an inert anode — a test of the concept // ECS Transactions. 2012. 50. № 11. P. 251–261.
- Nekrasov V.N., Limanovskaya O.V., Suzdaltsev A.V. et al. Stationary anode process at the platinum in KF–NaF–AlF3–Al2O3 melts // Rus. Met. (Metally). 2014. № 8. P. 664–670.
- Suzdaltsev A.V., Khramov A.P., Limanovskaya O.V. et al. Khronovol’tamperometriya na platine v rasplave KF–NaF–AlF3–Al2O3 [Chronovoltammetry at the platinum in the KF–NaF–AlF3–Al2O3 melt] // Rasplavy. 2015. № 5. P. 12–21. [In Russian].
- Suzdaltsev A.V., Khramov A.P., Zaikov Yu.P. et al. Chronopotentiometry at platinum electrode in KF–NaF–AlF3–Al2O3 melt // Chimica Techno Acta. 2015. 3. P. 190–194.
- Dewing E.W., Van der Kouwe E. Anodic phenomena in cryolite–alumina melts II. Chronopotentiometry at gold and platinum anodes // J. Electrochem. Soc. 1977. 124. P. 58–64.
- Nikolaev A. Yu., Suzdaltsev A.V., Zaikov Yu.P. Novyy sposob sinteza ligatur Al–Sc v oksidno–ftoridnykh i ftoridnykh rasplavakh [A novel approach for producing Al–Sc master alloys in the oxide–fluoride melts] // Rasplavy. 2020. № 2. P. 155–165. [In Russian].
- Roine A. HSC Chemistry® [Software], Outotec, Pori 2018. Software available at: http://www.outotec.com/HSC.
- Dubovtsev A.B., Zaikov Y.P., Murygin I.V., Ivanovsky L.E. Povedeniye oksidnykh anodov pri elektrolize khloridnykh rasplavov. 2. Issledovaniye anodnogo protsessa na keramicheskom elektrode v rasplave СaСl2–СaO [Behavior of oxide anodes during electrolysis of chloride melts. 2. Investigation of the anodic process on a ceramic electrode in CaCl2–CaO melt] // Rasplavy. 1992. № 1. P. 41–48. [In Russian].
- Zaikov Yu., Batukhtin V., Shurov N., Suzdaltsev A. High-temperature electrochemistry of calcium // Electrochem. Mat. & Tech. 2022. 1. № 1. 20221007.
Supplementary files
