Exact analytical solution of the equations for a quasiequilibrium two-phase domain: permeability and interdendritic spacing
- Authors: Makoveeva E.V.1, Alexandrov D.V.1, Titova E.A.1, Toropova L.V.1, Alexandrova I.V.1
-
Affiliations:
- Ural Federal University named after B.N. Yeltsin
- Issue: No 3 (2024)
- Pages: 238-251
- Section: Articles
- URL: https://rjraap.com/0235-0106/article/view/662113
- DOI: https://doi.org/10.31857/S0235010624030027
- ID: 662113
Cite item
Abstract
This study is concerned with the theoretical description of a quasi-stationary process of directional crystallization of binary melts and solutions in the presence of a quasi-equilibrium two-phase region. The quasi-equilibrium process is ensured by the fact that the system supercooling is almost completely compensated by heat released during the phase transformation. Quasi-stationarity of the process determining constancy of the crystallization rate is ensured by given temperature gradients in the solid and liquid phases. The system of heat and mass transfer equations and boundary conditions to them under these assumptions is dependent on a single spatial variable in the reference frame moving with the crystallization rate relative to a laboratory coordinate system. Exact analytical solutions to the formulated problem in parametric form are obtained. The parameter of the solution is the solid phase fraction in a two-phase region. The distributions of temperature and impurity concentration in the solid, liquid and two-phase regions of the crystallizing system, the rate of solidification, and the spatial coordinate in the two-phase region depending on the solid phase fraction in it are found. An algebraic equation for the solid phase fraction at the interface between the solid material and the two-phase region is derived. Exact analytical solutions show that the impurity concentration in the two-phase layer increases as the solid phase fraction increases. Moreover, the solid phase fraction at the interface solid phase — two phase region and its thickness increase as the temperature gradient in the solid phase and the solidification rate increase. The developed theory allows us to determine analytically the permeability of the two-phase region and a characteristic interdendritic spacing in it. Analytical solutions show that the relative permeability in the two-phase region increases from a certain value at the interface with the solid phase to unity at the interface with the liquid phase. The selection theory of stable dendritic growth allows us to determine analytically a characteristic interdendritic distance in the two-phase layer that decreases as the temperature gradient in the solid phase increases. An increase of impurity in the molten phase gives a decrease in the interdendritic spacing within a two-phase region.
About the authors
E. V. Makoveeva
Ural Federal University named after B.N. Yeltsin
Author for correspondence.
Email: dmitri.alexandrov@urfu.ru
Russian Federation, Ekaterinburg
D. V. Alexandrov
Ural Federal University named after B.N. Yeltsin
Email: dmitri.alexandrov@urfu.ru
Russian Federation, Ekaterinburg
E. A. Titova
Ural Federal University named after B.N. Yeltsin
Email: dmitri.alexandrov@urfu.ru
Russian Federation, Ekaterinburg
L. V. Toropova
Ural Federal University named after B.N. Yeltsin
Email: dmitri.alexandrov@urfu.ru
Russian Federation, Ekaterinburg
I. V. Alexandrova
Ural Federal University named after B.N. Yeltsin
Email: dmitri.alexandrov@urfu.ru
Russian Federation, Ekaterinburg
References
- Flemings M. Solidification Processing. New York: McGraw Hill, 1974.
- Mullin J.W. Crystallization. London: Butterworths, 1972.
- Makoveeva E.V., Alexandrov D.V., Ivanov A.A. // Math. Meth. Appl. Sci. 2021. 44. № 16. P. 12244–12251. https://doi.org/10.1002/mma.6970
- Barlow D.A., La Voie-Ingram E., Bayat J. // J. Cryst. Growth. 2022. 578. 126417. https://doi.org/10.1016/j.jcrysgro.2021.126417
- Makoveeva E.V., Alexandrov D.V. // Russ. Metall. (Metally). 2018. 8. P. 707–715. https://doi.org/10.1134/S0036029518080128
- Alexandrov D.V., Nizovtseva I.G., Alexandrova I.V. // Int. J. Heat Mass Trans. 2019. 128. P. 46–53. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.119
- Makoveeva E. V., Alexandrov D. V. // Eur. Phys. J. Spec. Top. 2020. 229. P. 2923–2935.https://doi.org/10.1140/epjst/e2020-000113-3
- Alexandrov D.V., Ivanov A.A., Nizovtseva I.G. et al. Crystals. 2022. 12. 949. https://doi.org/10.3390/cryst12070949
- Buyevich Yu.A., Alexandrov D.V., Mansurov V.V. Macrokinetics of Crystallization. New York: Begell House, 2001.
- Alexandrova I.V., Alexandrov D.V., Aseev D.L., Bulitcheva S.V. // Acta Physica Polonica A. 2009. 115. № 4. P. 791–794.https://doi.org/10.12693/APHYSPOLA.115.791
- Deguen R., Alboussière T., Brito D. // Phys. Earth Planet. Int. 2007. 164. № 1–2. P. 36–49.https://doi.org/10.1016/j.pepi.2007.05.003
- Alexandrov D.V., Galenko P.K. // Phys. Rev. E. 2013. 87. № 6. P. 062403. https://doi.org/10.1103/PhysRevE.87.062403
- Alexandrov D.V., Galenko P.K. // Phil. Trans. R. Soc. A. 2021. 379. № 2205. P. 20200325. https://doi.org/10.1098/rsta.2020.0325
- Alexandrov D.V., Osipov S.I., Galenko P.K., Toropova L.V. // Crystals. 2022. 12. P. 1288. https://doi.org/10.3390/cryst12091288
- Hills R.N., Loper D.E., Roberts P.H. // Q. J. Appl. Maths. 1983. 36. № 4. P. 505–540.https://doi.org/10.1093/qjmam/36.4.505
- Worster M.G. // J. Fluid Mech. 1986. 167. P. 481–501. https://doi.org/10.1017/S0022112086002938
- Alexandrov D.V., Ivanov A.O. // J. Cryst. Growth. 2000. 210. № 4. P. 797–810. https://doi.org/10.1016/S0022-0248(99)00763-0
- Alexandrov D.V. // Acta Mater. 2001. 49. № 5. P. 759–764. https://doi.org/10.1016/S1359-6454(00)00388-8
- Worster M.G. // J. Fluid Mech. 1992. 237. P. 649–669. https://doi.org/10.1017/S0022112092003562
- Schulze T.P., Worster M.G. // J. Fluid Mech. 1998. 356. P. 199–220. https://doi.org/10.1017/S0022112097007878
- Notz D., Worster M.G. // Ann. Glaciol. 2006. 44. P. 123–128. https://doi.org/10.3189/172756406781811196
- Alexandrov D.V., Galenko P.K. // Phys.-Usp. 2014. 57. № 8. P. 771–786. https://doi.org/10.3367/UFNe.0184.201408b.0833
- Tong X., Beckermann C., Karma A., Li Q. // Phys. Rev. E. 2001. 63. № 6. P. 061601. https://doi.org/10.1103/PhysRevE.63.061601
- Trivedi R. // Metall. Mater. Trans. A. 1984. 15. P. 977–982. https://doi.org/10.1007/BF02644689
- Weiguo Z., Lin L., Taiwen H. et al. // China Foundry. 2009. 6. № 4. P. 300–304. https://www.oalib.com/paper/2970182
- Alexandrov D.V., Malygin A.P. // Dokl. Earth Sci. 2006. 411. P. 1407–1411. https://doi.org/10.1134/S1028334X06090169
- Alexandrov D.V., Nizovtseva I.G. // Int. J. Heat Mass Trans. 2008. 51. № 21–22. P. 5204–5208. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.061
- Alexandrov D.V., Malygin A.P. // Phys. Earth Planet. Int. 2011. 189. № 3-4. P. 134–141. https://doi.org/10.1016/j.pepi.2011.08.004
- Alexandrov D.V., Malygin A.P. // Appl. Math. Modelling. 2013. 37. № 22. P. 9368–9378. https://doi.org/10.1016/j.apm.2013.04.032
- Huppert H.E., Worster M.G. // Nature. 1985. 314. P. 703–707. https://doi.org/10.1038/314703a0
- Kurz W., Fisher D.J. Fundamentals of Solidification. Aedermannsdorf: Trans Tech Publications, 1989.
- Alexandrov D.V., Malygin A.P., Alexandrova I.V. // Ann. Glaciol. 2006. 44. P. 118–122. https://doi.org/10.3189/172756406781811213
- Alexandrov D.V., Netreba A.V., Malygin A.P. // Int. J. Heat Mass Trans. 2012. 55. № 4. P. 1189–1196. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.048
- Huppert H.E. // J. Fluid Mech. 1990. 212. P. 209–240. https://doi.org/10.1017/S0022112090001938
- Alexandrov D.V., Nizovtseva I.G. // Dokl. Earth Sci. 2008. 419. P. 359–362. https://doi.org/10.1134/S1028334X08020384
- Alexandrov D.V., Bashkirtseva I.A., Malygin A.P., Ryashko L.B. // Pure Appl. Geophys. 2013. 170. P. 2273–2282. https://doi.org/10.1007/s00024-013-0664-z
- Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // Phil. Trans. R. Soc. A. 2018. 376. № 2113. P. 20170216. https://doi.org/10.1098/rsta.2017.0216
- Makoveeva E.V., Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // Eur. Phys. J.: Special Topics. 2023. 232. 1153–1163 https://doi.org/10.1140/epjs/s11734-023-00826-4
Supplementary files
