Development of laser felling modes of gas-thermal coating

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The use of copper and its alloys to create parts for metallurgical equipment is associated with an increase in abrasive wear and high-temperature corrosion. In this regard, there is a need to apply a protective coating. In particular, to prevent wear and premature chipping of the metal of copper tuyeres, the surface is hardened with a coating of zirconium dioxide stabilized with yttria oxide by thermal spraying in an air atmosphere. Due to the difference in the coefficient of thermal expansion of copper (at T = 300 K: 16.7 µm/m оС and at T = 750 K: 19.7 µm/m оС) and its low resistance to gas corrosion, the application of zirconium oxide (produced by a preapplied intermediate layer that plays a role in matching the coefficient of thermal expansion (CTE) between the copper base and the ceramic coating. In addition, the intermediate layer protects copper from gas corrosion. In this case, The use of copper and its alloys to create parts for metallurgical equipment is associated with an increase in abrasive wear and high-temperature corrosion. In this regard, there is a need to apply a protective coating. In particular, to prevent wear and premature chipping of the metal of copper tuyeres, the surface is hardened with a coating of zirconium dioxide stabilized with yttria oxide by thermal spraying in an air atmosphere. Due to the difference in the coefficient of thermal expansion of copper (at T = 300 K: 16.7 pm/m °G and at T = 750 K: 19.7 pm/m оG) and its low resistance to gas corrosion, the application of zirconium oxide (produced by a pre-applied intermediate layer that plays a role in matching the coefficient of thermal expansion (CTE) between the copper base and the ceramic coating. In addition, the intermediate layer protects copper from gas corrosion. In this case, nickel-based alloys were used as intermediate layers. The use of nickel as the basis of intermediate layers is due to the fact that copper and nickel form a continuous series of solid solutions, such as cupronickel or monel metal-like structures. This, in turn, assumes a smooth transition of thermophysical properties from copper to nickel alloy. To ensure increased adhesion of the transition layer to copper by increasing the area of mutual contact between copper and the sublayer (dagger penetration) and significantly increasing the homogeneity of the material of the intermediate layer made of a nickel alloy, laser melting of the intermediate sublayer (Ni–B–Si system) was used on a laser complex based on laser LS-5 with a power of 5 kW with a KUKA KR-60HA robot in an argon atmosphere. To test the modes, experiments were carried out on copper samples of a flat shape and a body of rotation. The optimal parameters for the process of melting flat samples were: processing speed 33 mm/s, power from 400 to 3900 W, focal length from 200 to 230 mm, pitch between tracks: 0.25, 0.5 and 1 mm. The optimal parameters for the process of melting rotating samples were: laser radiation power 400–450 W, processing step 0.125; 0.5, focal length from 200 to 210 mm.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Bakhteev

Ural Federal University named after the B. N. Yeltsin

Хат алмасуға жауапты Автор.
Email: igor.bakhteev@urfu.ru
Ресей, Yekaterinburg

K. Oleinik

Institute of Metallurgy, Ural Branch of the RAS

Email: igor.bakhteev@urfu.ru
Ресей, Yekaterinburg

A. Shak

Ural Federal University named after the B. N. Yeltsin

Email: igor.bakhteev@urfu.ru
Ресей, Yekaterinburg

E. Furman

Ural Federal University named after the B. N. Yeltsin

Email: igor.bakhteev@urfu.ru
Ресей, Yekaterinburg

R. Valiev

Ural Federal University named after the B. N. Yeltsin

Email: igor.bakhteev@urfu.ru
Ресей, Yekaterinburg

A. Vopneruk

NPP «Mashprom»

Email: igor.bakhteev@urfu.ru
Ресей, 620143, Yekaterinburg

Әдебиет тізімі

  1. Zhuk V.I. Analiz teplovoy raboty vozdushnykh furm domennoy pechi [Analysis of ther mal performance of blast furnace air tuyeres] // Vestnik priazovskogo gosudarstvennogo tekhnicheskogo universiteta. 2002. № 12. Р. 25–30. [In Russian].
  2. Li G., Huang P., Cheng P., Wu W., Zhang Y., Pang Zh., Xu Q., Zhu K., Zou X., Li R. // Engineering Failure Analysis. 2023. 153. 107537 https://doi.Org/10.1016/j.engfailanal.2023.107537
  3. Chai Y.-F., Zhang J., Ning X.-J., Wei G.-Y., Chen Y.-T. // High Temperature Materials and Processes. 2015. № 4. https://doi.org/10.1515/htmp-2014-0149
  4. Oleynik K.I., Bakhteyev I.S., Russkikh A.S., Osinkina T.V, Zhilina Ye.M. Naplavleniye mnogo- komponentnykh splavov, soderzhashchikh tugoplavkiye metally [Surfacing of multicomponent alloys containing refractory metals] // Rasplavy. 2024. № 1. Р 106–113. [In Russian].
  5. Manshilin A.G., Skladanovskiy Ye.N., Netsvetov V.I., Tunik O.A. Dut’yevaya furma domennoy pechi i sposob naneseniya zashitnogo pokrytiya na dut’yevuyu furmu domen- noy pechi [Blast furnace tuyere and method for applying a protective coating to a blast furnace tuyere]. Patent RF №2235789. Applied 04.11.2002. Published 27.05.2004. [In Russian].
  6. Materialy v mashinostroyenii. Mashinostroyeniye. Entsiklopediya [Materials in mechanical engineering. Mechanical engineering. Encyclopedia] / Ed. Frolov K.V. / M.: Mashinostroyeniye, 1994. [In Russian].
  7. Komolikov Yu.I., Kashcheyev I.D., Khrustov V.R. // Novyye ogneupory. 2016. № 9. P. 59–62. [In Russian]. https://doi.org/10.17073/1683-4518-2016-9-59-62
  8. Samedov E.M. Povysheniye iznosostoykosti vozdushnykh furm domennykh pechey putem sozdaniya zashchitnogo alyuminiyevogo gazotermicheskogo pokrytiya [Increasing the wear resistance of blast furnace air tuyeres by creating a protective aluminum thermal coating]. Dissertation of a candidate of technical sciences. 05.02.2013. Moscow, 2007. [In Russian].
  9. Huang H., Singh S., Juhasz A., Roccisano A., Ang A., Stanford N. // SSRN. 2023. https://doi.org/10.2139/ssrn.4613064
  10. Hu D., Yan L., Chen H., Liu J., Mengchao W., Deng L. // Optics & Laser Technology. 2021. 142. 107210. https://doi.org/10.10167j.optlastec.2021.107210.
  11. Pavlov A.Yu., Ovchinnikov V.V., Shlyapin A.D. Osnovy gazotermicheskogo napyleniya zashchitnykh pokrytiy: ucheb. Posobiye [Fundamentals of thermal spraying of protective coatings: textbook. Manual.]. Moskva; Vologda: Infra-Inzheneriya, 2020. [In Russian].
  12. Gu D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanism // International Materials Reviews. 2012. 57. Р. 133–164.
  13. Kefeni K., Msagati T., Alfred M., Mamba B. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device // Materials Science and Engineering: B. 2017. 215. Р. 37–55.
  14. Wang T., Zhang J., Zhang Y., Chen S., Luo Z., Wu J., Zhu L., Lei J. Improving wear and corrosion resistance of LDEDed CrFeNi MEA through addition of B and Si // J. Alloy. Compd. 2023. 968. 172223.
  15. Lyu Y., Sun Y., Yang Y. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel // Metals and Materials International. 2016. 22. Р. 311–318.
  16. Krlrgay K., Buytoz S., Ulutan M. Microstructural and tribological properties of induction cladded NiCrBSi/WC composite coatings // Surface and Coatings Technology. 2020. 397. 125974.
  17. Loginov Yu.N. Med’ i deformiruyemyye mednyye splavy: ucheb. posobiye. [Copper and wrought copper alloys: study guide]. UPI. Yekaterinburg: UGTU-UPI, 2004. [In Russian].
  18. Lyakishev N.P., Pliner Yu.L., Lappo S.I. Borsoderzhashchiye stali i splavy [Boron-containing steels and alloys]. M.: Metallurgiya, 1986. [In Russian].
  19. Devoyno O.G. Tekhnologiya formirovaniya iznosostoykikh pokrytiy na zheleznoy osnove metodami lazernoy obrabotki [Technology of formation of wear-resistant coatings on an iron base by laser processing methods]. Minsk: BNTU, 2020. [In Russian].

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The appearance of the tuyere of the blast furnace and the spraying zone.

Жүктеу (115KB)
3. Fig. 2. The strategy of processing a copper rod along a spiral trajectory.

Жүктеу (72KB)
4. Fig. 3. Microplate of the sample, mode 1. a – panoramic image; b, c – coating defects; 1 – porosity inside the fusion zone, 2 – non-molten coating.

Жүктеу (316KB)
5. Fig. 4. Microplate of the sample, mode 1. a – panoramic image; b – coating defects; c – oblique light image; 1 – porosity inside the fusion zone, 2 – non-fused coating.

Жүктеу (428KB)
6. Fig. 5. Microplate of the sample, mode 5. a — panoramic image; b, c — coating defects. 1 — non—fused coating, 2 - porosity of the fused layer.

Жүктеу (354KB)
7. Fig. 6. The size of the processed area and the processing strategy.

Жүктеу (82KB)
8. Fig. 7. Processing model.

Жүктеу (68KB)
9. Fig. 8. An indicative diagram of the technological parameters for melting the self–fluxing coating of the Ni-B–Si system.

Жүктеу (110KB)
10. Rhys. 9. Type specimen: A, B – Zone 1; C-Zone 2; D, D-Zone 3.

Жүктеу (568KB)

© Russian Academy of Sciences, 2024