Simulation of dissolution of cerium trifluoride in a mixture of LIF–NaF–KF

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The study of phase diagrams of multicomponent molten mixtures is traditionally carried out either by experimental measurements or thermodynamic calculations based on known experimental data. Atomistic modeling occupies a significantly smaller share in the methodology, and the capabilities of this approach have been poorly studied. In this work, we simulated the dissolution of cerium trifluoride in the ternary eutectic of lithium, sodium, and potassium fluorides using the molecular dynamics method. A time- and ensemble-scale simulation of the coexisting crystalline phase and melt at several temperatures was carried out. The influence of ensemble size was studied. The rate of dissolution was studied depending on temperature. The asymptote of the dependence agrees well with the experimental liquidus temperature for a given composition. A conclusion is given about the possibility of using molecular dynamics to determine the complete solubility of a melt component.

Sobre autores

D. Zakiryanov

Institute of High Temperature Electrochemistry, Ural Branch of the RAS

Autor responsável pela correspondência
Email: dmitryz.ihte@gmail.com
Rússia, Yekaterinburg

Bibliografia

  1. Magnusson J., Memmott M., Munro T. // Annals of Nuclear Energy. 2020.146. 107608. https://doi.org/10.1016/j.anucene.2020.107608
  2. Ågren J. // Current Opinion in Solid State & Materials Science 1996. 1. Р. 355–360. https://doi.org/10.1016/s1359-0286(96)80025-8
  3. Liu Z-K. // Calphad. 2023. 82. 102580. https://doi.org/10.1016/j.calphad.2023.102580
  4. Besmann T.M., Schorne-Pinto J. // Thermo. 2021. 1. Р. 168–78. https://doi.org/10.3390/thermo1020012
  5. Xiong W., Hao L. // Journal of Phase Equilibria and Diffusion. 2022. 43. Р. 894–902. https://doi.org/10.1007/s11669-022-01018-8
  6. Jayaraman S., Thompson A.P., Von Lilienfeld O.A. // Nonlinear and Soft Matter Physics 2011. 84. https://doi.org/10.1103/physreve.84.030201
  7. Shah T., Fazel K., Lian J., Huang L., Shi Y., Sundararaman R. // Journal of Chemical Physics 2023. 159. 124502. https://doi.org/10.1063/5.0164824
  8. Fu D., Zhang C., Wang G., Na H., Wu Y. // Solar Energy Materials & Solar Cells/Solar Energy Materials and Solar Cells. 2024. 273. 112916. https://doi.org/10.1016/j.solmat.2024.112916
  9. Kobelev M.A., Tatarinov A.S., Zakiryanov D.O., Tkachev N.K. // Phase Transitions 2020. 93. № 5. Р. 504–508. https://doi.org/10.1080/01411594.2020.1758318
  10. Romatoski R.R., Hu L.W. // Annals of Nuclear Energy. 2017. 109. Р. 635–47. https://doi.org/10.1016/j.anucene.2017.05.036
  11. Ponomarev L.I., Seregin M.B., Mikhalichenko A.A., Parshin A.P., Zagorets L.P. Obosnovaniye vybora imitatorov ftoridov aktinoidov dlya issledovaniya rastvorimosti v toplivnoy soli zhidkosolevykh reaktorov [Justification for the choice of actinide fluoride simulators for studying the solubility in the fuel salt of molten salt reactors] // Atomnaya energiya. 2012. 112. P. 341–346. [In Russian].
  12. Mushnikov P.N., Tkacheva O.Yu., Kholkina A.S., Zaikov Yu.P., Shishkin V.Yu., Dub A.V. // Atomic Energy. 2022. 131. Р. 263–267. https://doi.org/10.1007/s10512-022-00876-2
  13. Seregin M.B., Parshin A.P., Kuznetsov A.Yu., Ponomarev L.I., Melnikov S.A., Mikhalichenko A.A., Rzheutsky A.A., Manuylov R.N. Rastvorimost' UF4, ThF4, CeF3 v rasplave LiF–NaF–KF [Solubility of UF4, ThF4, CeF3 in the LiF–NaF–KF melt] // Radiokhimiya. 2011. 53. P. 416–418. [In Russian].
  14. Zakiryanov D. // Molecular Simulation. 2023. 49. Р. 845–54. https://doi.org/10.1080/08927022.2023.2193656
  15. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Phase Equilibria. 2020. 506. 112369. https://doi.org/10.1016/j.fluid.2019.112369.
  16. Haynes W.M., Lide D.R., Bruno T.J., CRC Handbook of Chemistry and Physics, CRC Press, 2014. 781 р.
  17. Melting points using GNN model. Available at: https://next-gen.materialsproject.org/contribs/contributions/65cfa83c1eaa004f45603e58 (accessed 24.06.24).
  18. Plimpton S. // Journal of Computational Physics. 1995. 117. Р. 1–19. https://doi.org/10.1006/jcph.1995.1039

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024