Calculation of oxygen distribution coefficients of RF3 (R = La, Gd) fluorides with the tysonite structure during their crystallization from a melt
- Authors: Sorokin N.I.1
-
Affiliations:
- Kurchatov Crystallography and Photonics Complex, National Research Center “Kurchatov Institute”
- Issue: No 4 (2024)
- Pages: 417-429
- Section: Articles
- URL: https://rjraap.com/0235-0106/article/view/662094
- DOI: https://doi.org/10.31857/S0235010624040061
- ID: 662094
Cite item
Abstract
Using the method of modified cryoscopy, the thermodynamic distribution coefficients of oxygen k0 in LaF3 and α-GdF3 with a tysonite structure (sp. gr. )were calculated from the fusibility diagrams of condensed systems RF3–R2O3 (R = La, Gd). The calculated coefficients k0 are 1.02 and 1.12 for lanthanum and gadolinium trifluorides, respectively. The values of the coefficients k0 satisfy the condition k0 > 1, which confirms the formation of maxima in the fusibility curves of tysonite solid solutions tys- RF3–2xOx. For LaF3, the proximity of the distribution coefficient to k0 = 1 corresponds to an almost uniform distribution of oxygen in the volume of the crystallized fluoride melt. Knowledge of oxygen distribution coefficients during crystallization from a melt is important for choosing a strategy for crystallophysical purification of trifluorides RF3 from oxygen impurities and obtaining oxofluorides tys-RF3–2xOx with a given impurity distribution.
About the authors
N. I. Sorokin
Kurchatov Crystallography and Photonics Complex, National Research Center “Kurchatov Institute”
Author for correspondence.
Email: nsorokin1@yandex.ru
Russian Federation, Moscow
References
- Sobolev B.P. The rare earth trifluorides. Barcelona: Moscow Institute of Crystallography and Institut d’Estudis Catalans. 2000−2001. 980 p.
- Sorokin N.I., Karimov D.N., Buchinskaya I.I. Conductivity of R1-yPbyF3-y (R = Pr, Nd) solid electrolytes with the tysonite structure // Russian Journal of Electrochemistry. 2021. 57. № 8. P. 833−839.
- Patro L.N. Role of mechanical milling on the synthesis and ionic transport properties of fast fluoride ion conducting materials // J. Solid State Electrochem. 2020. 24. P. 2219−2232.
- Sobolev B.P., Sorokin N.I., Krivandina E.A., Zhmurova Z.I. 293-K conductivity optimization for single crystals of solid electrolytes with tysonite structure (LaF3): I. Nonstoichiometric phases R1-yCayF3-y (R = La – Lu, Y) // Crystallography Reports. 2014. 59. № 4. P. 550–562
- Sorokin N.I., Sobolev B.P., Krivandina E.A., Zhmurova Z.I. Optimizatsiya po provodimosti pri 293 K monokristallov tverdykh elektrolitov so strukturoy tisonita (LaF3): 2. Nestekhiometricheskiye fazy R1-yMyF3-y (R = La– Lu, Y; M = Sr, Ba) (293-K conductivity optimization for single crystals of solid electrolytes with tysonite structure (LaF3): II. Nonstoichiometric phases R1-yMyF3-y (R = La– Lu, Y; M = Sr, Ba)) // Crystallography Reports. 2015. 60. № 1. С. 123−129. [In Russian].
- Karkera G., Anji Reddy M.A., Fichtner M. Recent developments and future perspectives of anionic batteries // J. Power Sources. 2021. 481. P. 228877.
- Tressaud A., Poeppelmeier K. (Eds.). Photonic and electronic properties of fluoride materials. Amsterdam: Elsevier. 2016. 495 p.
- Sobolev B.P. (Ed.) Multicomponent crystals based heavy metal fluorides for radiation detectors. Institut d’Estudis Catalans. 1994. 261 p.
- Takami T., Pattanathummasid C., Kutana A., Asahi R. Challenges for fluoride superionic conductors: fundamentals, design and applications // J. Phys. Cond. Mater. 2023. 35. № 29.
- Sorokin N.I., Sobolev B.P. Sobstvennaya ftor-ionnaya provodimost’ kristallicheskikh matrits ftoridnykh superionikov: BaF2 (tip flyuorita) i LaF3 (tip tisonita) (The intrinsic fluorine-ion conductivity of crystalline matrices of fluoride superionics: BaF2 (fluorite type) and LaF3 (tysonite type)) // Fizika tverdogo tela (Solid State Physics) 2019. 61. № 1. С. 53−58. [In Russian].
- Sorokin N.I., Zhmurova Z.I., Krivandina E.A., Sobolev B.P. Influence of purity of NdF3 single crystals on their ionic conductivity // Crystallography Reports. 2012. 57. № 3. P. 461–462.
- Sobolev B.P. Nonstoichiometry in inorganic fluorides. IV. The initial stage of anionic nonstoichiometry in RF3 (R – Y, La, Ln) // Crystallography Reports. 2021. 66. № 3. P. 349–360.
- Sobolev B.P. Nonstoichiometry in inorganic fluorides. III. Anionic nonstoichiometry in MF2 (M = Ca, Sr, Ba) // Crystallography Reports. 2020. 65. № 5. P. 678−686.
- Fergus J.W. The application of solid fluoride electrolytes in chemical sensors // Sensors and Actuators. B. 1997. 42. P. 119−130.
- Yamazoe N., Hisamoto J., Miura N., Kuwata S. Potentiometric solid-state oxygen sensor using lanthanum fluoride operative at room temperature // Sensors and Actuators. 1987. 12. P. 415−423.
- Vasyliev V., Molina P., Nakamura M., Vhllora E.G., Shimamura K. Magneto-optical properties of Tb0.81Ca0.19F2.81 and Tb0.76Sr0.24F2.76 // Optical Mater. 2011. 33. P. 1710−1714.
- Krivandina E.A., Zhmurova Z.I., Sobolev B.P. On the variation of the impurity composition in LaF3 crystals grown by the bridgman-stockbarger method // Crystallography Reports. 2001. 46. № 4. P. 687–689.
- Fedorov P.P., Turkina T.M., Lyamina O.I., Tarasova E.V., Zibrov I.P., Sobolev B.P. Raschet koeffitsiyentov raspredeleniya primesi iz krivykh likvidusa binarnykh sistem МF2−RF3 (Calculation of impurity distribution coefficients from liquidus curves of binary systems МF2−RF3) // Visokochistye veshchestva (High purity substances). 1990. № 6. P. 67−72. [In Russian].
- Fedorov P.P., Chernova E.V. Distribution coefficients of rare-earth oxides in zirconium dioxide melt crystallization // Inorganic Materials. 2021. 57. № 9. P. 901–905.
- Sobolev B.P., Fedorov P.P. Phase diagrams of the CaF2-(Y,Ln)F3 systems: 1. Experimental // J. Less-Common Metals. 1978. 60. № 1. P. 33−46.
- Sobolev B.P., Seiranian K.B. Phase diagrams of systems SrF2-(Y,Ln)F3: 2. Fusibility of systems and thermal behavior of phases // J. Solid State Chem. 1981. 39. № 2. P. 17−24.
- Sobolev B.P., Tkachenko N.L. Phase diagrams of the BaF2-(Y, Ln)F3 systems // J. Less-Common Metals. 1982. 85. № 2. P. 155−170.
- de Kozak A., Samouel M., Chretien A. Les systemes GdF3−MF (M = K, Rb, Cs) et GdF3−Gd2O3 // Rev. Chim. Miner. 1973. 10. № 1−2. P. 259−271.
- de Kozak A., Samouel M., Erb A. Le systeme DyF3−Dy2O3 // Rev. Chim. Miner. 1980. 17. № 5. P. 440−444.
- Sobolev B.P., Fedorov P.P., Shteynberg D.B., Sinitsyn B.V., Shakhkalamian G.S. On the problem of polymorhism and fusion of lanthanide trifluorides: 1. The influence of oxygen on phase transition temperatures // J. Solid State Chem. 1976. 17. № 2. P. 191−199.https://ppfedorov.narod.ru/index/phase-diagrams
- Fedorov P.P., Zhmurova Z.I., Bondareva O.S., Lovetskaya G.A., Sobolev B.P. Vzaimodeystviye ftorida litiya s ftoridami magniya i margantsa (Interaction of lithium fluoride with magnesium and manganese fluorides) // Zhurnal neorganicheskoi khimii (Journal of Inorganic Chemistry). 1994. 39. № 6. P. 1010−1013 [In Russian].
- Ivanov S.P., Buchinskaya I.I., Fedorov P.P. Distribution coefficients of impurities in cadmium fluoride // Inorganic Materials. 2000. 36. № 9. P. 392–396.
- Buchinskaya I.I., Fedorov P.P. Lead difluoride and related systems // Russian Chemical Reviews. 2004. 73. № 4. С. 371–400.
- Greis O., Cader M.S.R. Polymorphism of high purity rare earth trifluorides // Thermochim. Acta. 1985. 87. № 1. P. 145−150.
- Spedding F.H., Henderson D.C. High-temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earth Y, La, Pr, Nd, Gd, Ho and Lu // J. Chem. Phys. 1971. 54. № 6. P. 2476−2483.
- Spedding F.H., Beaudry B.J., Henderson D.C., Moorman J. High-temperature enthalpies and related thermodynamic functions of the trifluorides of Sc, Ce, Sm, Eu, Gd, Tb, Dy, Er, Tm and Yb // J. Chem. Phys. 1974. 60. № 4. P. 1578−1588.
- Tretyakov Yu.D. Printsipy sozdaniya novykh tverdofaznykh materialov (Principles of creating new solid-phase materials) // Izvestiya Akademii Nauk SSSR. Neorganicheskie materialy (Proceedings of the USSR Academy of Sciences. Inorganic Materials). 1985. № 5. P. 693−701. [in Russian].
- Kim D.G., van Hoek C., Liebske C., van der Laan S., Hudon P., Jung I.H. Phase diagram study of the CaO−CaF2 system // ISIJ International. 2012. 52. № 11. P. 1945−1950.
- Bollmann W. Solubility and distribution coefficient of oxygen in CaF2 // Cryst. Res. Technol. 1982. 17. № 11. P. K107−K108.
- Bollmann W. Solubility of CaO in CaF2 crystals // Kristall und Technik. 1977. B. 12. № 9. P. 941−944.
- Bollmann W. Incorporation of O2- and OH- ions in CaF2 crystals by reaction with the surrounding atmosphere // Phys. Stat. Solidi (a). 1980. 57. P. 601−607.
- Svantner M., Mariani E. Influence of oxygen on electrical properties of CaF2 crystals // Kristall und Technik. 1978. B. 13. № 12. P. 1431−1434.
- Delbove F. Application de la methode cryometrique a haute temperature abetude de la formation de solutions solides dans les fluorures alcalino-terreux, a la limite de dilution infinie // Silicates Industriels. 1967. 32. № 7−8. P. 259−267.
- Kim D.G. Experimental study and thermodynamic model of the CaO−SiO2−Al2O3−CaF2 system // Thesis. McGill University. Montreal. 2011. 95 p.
Supplementary files
