3D model of a stable triangle LiF–NaBr–KBr four-component reciprocal system Li+, Na+, K+ || F-, Вr-

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A 3D model of the phase equilibrium states of the quasi-three-component system LiF–NaBr–KBr, which is a stable triangle of the four-component reciprocal system Li+, Na+, K+ || F-, Br-, has been constructed. Based on the 3D-model, polythermal, isothermal sections and the polytherm of phase crystallization were constructed for the first time. Two polythermal sections contain wide areas of boundary solid solutions based on sodium and potassium bromide. In an isothermal section at 650 оC, the fields of the liquid phase and the coexisting two and three phases are delimited. The crystallization polytherm is represented by three fields. In the crystallization field of lithium fluoride, the area of separation of two liquids is limited. The direction of the ion exchange reaction 2LiBr + NaF + KF = 2LiF + NaBr + KBr was confirmed by thermodynamic calculations at temperatures of 400, 600, 800, 1000K. The exothermic nature of the exchange reaction is confirmed by taking a DTA heating curve for a mixture of powders from 50% LiBr + 25% NaF + 25% KF, and the phase composition of the reaction products LiF + NaBr(OTR) + KBr(OTR) is confirmed by X-ray phase analysis data, where OTR is limited solid solution.

Full Text

Restricted Access

About the authors

A. V. Burchakov

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Russian Federation, Samara

I. K. Garkushin

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Russian Federation, Samara

E. M. Dvoryanova

Samara State Technical University

Author for correspondence.
Email: dvoryanova_kat@mail.ru
Russian Federation, Samara

U. A. Emelyanova

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Russian Federation, Samara

A. A. Finogenov

Samara State Technical University

Email: dvoryanova_kat@mail.ru
Russian Federation, Samara

References

  1. Ma L., Zhang C., Wu Yu. at al. // Solar Energy Materials and Solar Cells. 2012. 235. 111485. https://doi.org/10.1016/j.solmat.2021.111485
  2. Caraballo A., Galán-Casado S., Caballero Á. at al. // Energies. 2021. 14. I. 4. https://doi.org/10.3390/en14041197
  3. Bauer T., Odenthal Ch., Bonk A. // Chemie Ingenieur Technic. 2021. 93. I. 4. P. 534–546. https://doi.org/10.1002/cite.202000137
  4. Masset P., Guidotti R.A. // Journal of Power Sources. 2007. 164. P. 397–414. https://doi.org/10.1016/j.jpowsour.2006.10.080
  5. Khokhlov V.A. // Russian Metallurgy (Metally). 2010. № 2. P. 96–104. https://doi.org/10.1134/S0036029510020047
  6. Khimicheskiye istochniki toka: Spravochnik [Chemical current sources: Directory] / Ed. N.V. Korovina, A.M. Skundina. M.: Izdatel’stvo MEI. 2003. [In Russian].
  7. Roper R., Harkema M., Sabharwall P. at al. // Annals of Nuclear Energy. 2022. 69. 108924. https://doi.org/10.1016/j.anucene.2021.108924
  8. Rozhentsev D.A., Tkachev D.A. // Rasplavy. 2023. № 6. P. 570–576. [In Russian]. https://doi.org/10.31857/S0235010623060063
  9. Khokhlov V.A., Ignatiev V.V., Afonichkin V. Evaluating physical properties of molten salt reactor fluoride mixtures // J. of Fluorine Chemistry. 2009. 130. № 1. P. 30–37.
  10. Novoselova A.V., Smolenskiy V.V., Bove A.L. // Rasplavy. 2023. № 5. P. 443–453. [In Russian].https://doi.org/ 10.31857/S0235010623040047
  11. Garkushin I.K., Kondratyuk I.M., Dvoryanova Ye.M. Analiz, prognozirovaniye i eksperimental’noye issledovaniye ryadov sistem iz galogenidov shchelochnykh i shchelochnozemel’nykh elementov [Analysis, prediction and experimental study of a series of systems of halides of alkali and alkaline earth elements]. Samara: Samar. gos. tekhn. un-t, 2007. [In Russian].
  12. Peng Q., Ding J., Wei X. at al. // Applied Energy. 2010. 87. I. № 9. P. 2812–2817. https://doi.org/10.1016/j.apenergy.2009.06.022
  13. Serp J., Allibert M., Beneš O. at al. // Progress in Nuclear Energy. 2014. 77. P. 308–319. https://doi.org/10.1016/j.pnucene.2014.02.014
  14. Diagrammy plavkosti solevykh sistem. Ch. I. Dvoynyye sistemy s obshchim anionom [Fusibility diagrams of salt systems. Part I. Binary systems with a common anion] / Edited by V.I. Posypaiko, E.A. Alekseeva. M.: Metallurgiya. 1977. [In Russian].
  15. Diagrammy plavkosti solevykh sistem. Ch. II. Dvoynyye sistemy s obshchim anionom [Fusibility diagrams of salt systems. Part II. Binary systems with a common anion] / Edited by V.I. Posypaiko, E.A. Alekseeva. M.: Metallurgiya.1977. [In Russian].
  16. Diagrammy plavkosti solevykh sistem. Ch. III. Dvoynyye sistemy s obshchim kationom [Fusibility diagrams of salt systems. Part III. Binary systems with a common cation] / Edited by V.I. Posypaiko, E.A. Alekseeva. M.: Metallurgiya. 1979. [In Russian].
  17. Diagrammy plavkosti solevykh sistem. Troynyye vzaimnyye sistemy [Fusibility diagrams of salt systems. Triple reciprocal systems] / Edited by V.I. Posypayko, Ye.A. Alekseyevoy. M.: Khimiya. 1977. [In Russian].
  18. Diagrammy plavkosti solevykh sistem. Mnogokomponentnyye sistemy [Fusibility diagrams of salt systems. Multicomponent systems] / Edited by V.I. Posypayko, Ye.A. Alekseyevoy. M.: Khimiya. 1977. [In Russian].
  19. Yegortsev G.Ye., Garkushin I.K., Istomova M.A. Fazovyye ravnovesiya i khimicheskoye vzaimodeystviye v sistemakh s uchastiyem ftoridov i bromidov shchelochnykh metallov [Phase equilibria and chemical interaction in systems involving fluorides and bromides of alkali metals]. Yekaterinburg: UrO RAN, 2008. [In Russian].
  20. Burchakov A.V., Garkushin I.K., Milov S.N. // Izv. Sarat. un-ta. Nov. ser. Ser. Khimiya. Biologiya. Ekologiya. 2018. 18. № 4. P. 370. [In Russian]. https://doi.org/10.18500/1816-9775-2018-18-4-370-377
  21. Kang J. 3D Stereo spatial phase diagram for typical complex ternary system // J. Kang. – Material Sci & Eng. 2019. 3. I. № 1. P. 38–40.
  22. Termicheskiye konstanty veshchestv. Spravochnik [Thermal constants of substances. Directory] / Edited by V.P. Glushko. M.: VINITI, 1981. X. № 1. [In Russian].
  23. Termicheskiye konstanty veshchestv. Spravochnik [Thermal constants of substances. Directory] / Edited by V.P. Glushko. M.: VINITI, 1981. X. № 2. [In Russian].
  24. Barin I. Thermochemical data of pure substances. VCH Verlagsgeselschaft mbH. Weinheim, 1995.
  25. Garkushin I.K., Istomova M.A., Garkushin A.I. i dr. // Izv. vuzov. Khimiya i khim. tekhnologiya. 2020. 63. № 4. С. 55–62. [In Russian]. https://doi.org/10.6060/ivkkt.20206304.6159
  26. Yegunov V.P. Vvedeniye v termicheskiy analiz [Introduction to Thermal Analysis]. Samara, 1996. [In Russian].
  27. Wagner М. Thermal Analysis in Practice: Fundamental Aspects. Hanser Publications. 2018. P. 158.
  28. Moshchenskiy Yu.V. // Pribory i tekhnika eksperimenta. M.: RAN. 2003. 46. № 6. С. 143. [In Russian].
  29. Fedotov S.V., Moshchenskiy Yu.V. Interfeysnoye programmnoye obespecheniye DSCTool [Interface software DSCTool]. Samara: Samar. gos. tekhn. un-t. 2004. [In Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scan of the face elements of the system Li+, Na+, K+ || F-, Vg- [ ].

Download (133KB)
3. Fig. 2. The prism of the compositions of the system Li+, Na+, K+ || F-, Vg- [ ].

Download (129KB)
4. Fig. 3. 3D model of the quasi-linear LiF–NaBr–KBr system: a) the phase complex of the system; b) a detachable model of the phase complex.

Download (265KB)
5. Fig. 4. T-x is a QT section diagram of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Download (140KB)
6. Fig. 5. T-x is a K1K2 section diagram of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Download (136KB)
7. Fig. 6. Isothermal section at a temperature of 650 ° C of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Download (84KB)
8. Fig. 7. Polytherm of crystallization of the quasi–linear LiF–NaBr-KBr system constructed from a 3D model.

Download (82KB)
9. Figure 8. The location of mixture 1 on the K1–K2 conversion line in the unstable triangle NaF–KF–LiBr.

Download (52KB)
10. Fig. 9. Derivatogram of heating a mixture of powders 50٪ LiBr + 25% NaF + 25% KF.

Download (92KB)
11. Fig. 10. Derivatogram of cooling the melt of a mixture of powders 50٪ LiBr + 25% NaF + 25% KF.

Download (87KB)
12. 11. X-ray image of a sample of the composition 50% LiBr + 25% NaF + 25% KF (KBr PDF 01-072-1541; NaBr PDF 01-078-0761; LiF PDF 01-071-3743).

Download (88KB)
13. Fig. 12. The crystallization scheme of mixture 1 on the conversion line K1–K2 in a stable triangle LiF–NaBr–KBr.

Download (93KB)

Copyright (c) 2024 Russian Academy of Sciences