Thermal analysis and modeling of phase equilibria in the NaCl–NaBr–Na2WO4 system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase complex of a three-component system of sodium chlorides, bromides and tungstates was studied for the first time using experimental and theoretical methods. It was found that the liquidus surface of the system consists of the crystallization fields of NaBr, Na2WO4, Na3ClWO4 compounds and NaClxBr1–x solid solutions. The differential thermal method of physico-chemical analysis (DTA) revealed the compositions and melting points of eutectic in the quasi–binary and three–component systems NaBr–Na3ClWO4 and NaCl–NaBr–Na2WO4, respectively. To establish the nature of the physico-chemical interaction in the system, three compositions were studied in the secondary triangle NaCl–NaBr–Na3ClWO4 by the DTA method, thermal effects of tertiary crystallization were not recorded on the DTA curves of these compositions, which is proof of the absence of a non-invariant composition in the NaCl–NaBr–Na3ClWO4 simplex. To determine the composition and melting point of the nonvariant composition located in the NaBr–Na2WO4–Na3ClWO4 simplex, a polythermal section located in the field of crystallization of sodium bromide and a nonvariant section emerging from the crystallization pole of sodium bromide passing through the point of joint crystallization of sodium chloride and the compound, with a constant decrease in the content of sodium bromide in the studied compositions before the onset of non-invariant crystallization process. The composition of the three-component eutectic of ED in molar percentages, crystallizing at 560оC with the following component content, has been determined: 7.5% NaCl; 38.5% NaBr; 54% Na2WO4. Based on data on the melting temperatures of the initial salts, compositions and crystallization temperatures of two- and three-component systems, a 3D-model of the “composition–temperature” phase complex in the temperature range 500–700оC was formed using theoretical methods. On the basis of the model, the isotherms of the liquidus surface and the T–x diagram of the polythermal section for which experimental studies were conducted was constructed. Also, as an example of using a 3D-model, the composition of the equilibrium phases released during cooling of an arbitrarily selected figurative point in the temperature range from 700 to 500оC. was calculated.

About the authors

N. N. Verdiev

Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS

Author for correspondence.
Email: verdiev55@mail.ru
Russian Federation, Makhachkala

A. V. Burchakov

Samara State Technical University

Email: verdiev55@mail.ru
Russian Federation, Samara

Z. N. Verdieva

Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS

Email: verdiev55@mail.ru
Russian Federation, Makhachkala

A. B. Alkhasov

Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS

Email: verdiev55@mail.ru
Russian Federation, Makhachkala

M. M. Magomedov

Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS

Email: verdiev55@mail.ru
Russian Federation, Makhachkala

I. M. Kondratyuk

Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS

Email: verdiev55@mail.ru
Russian Federation, Makhachkala

L. S. Muradova

Institute of Problems of Geothermy and Renewable Energy – branch of the Joint Institute of High Temperatures of the RAS

Email: verdiev55@mail.ru
Russian Federation, Makhachkala

References

  1. The database. Thermal constants of substances. The Institute of Thermophysics of Extreme Conditions of the RAS of the United Institute of High Temperatures of the RAS. Faculty of Chemistry, Lomonosov Moscow State University. [Electronic resource] http://www.chem.msu.ru/cgi-bin/tkv.pl . show=welcome. html. [In Russian].
  2. Lidin R., Andreeva A. L., Molochko V.A. Konstanty neorganicheskikh veshchestv. Spravochnik [Constants of inorganic substances. Guide]. M.: Bustard, 2008. P. 685. [In Russian].
  3. Kharchenko A.V., Egorova E.M., Garkushin I.K. // Journal Neorgan. Chemistry. 2022. 67. № 2. P. 224-229. [In Russian].https://doi.org/10.31857/S0044457X22020064
  4. Verdieva Z.N., Garkushin I.K., Verdiev N.N., Zeynalov M.Sh., Musaeva P.A. Energoyemkiye teplonositeli iz galogenidov shchelochnykh i shchelochnozemel’nykh metallov [Energy-intensive heat carriers from halides of alkaline and alkaline earth metals] // Collection: Vozobnovlyayemaya energetika: problemy i perspektivy. Aktual’nyye problemy osvoyeniya vozobnovlyayemykh energoresursov. Mat. VI International Conference. “Aktual’nyye problemy osvoyeniya vozobnovlyayemykh energoresursov” and the XII School of young scientists “Actual problems of the development of renewable energy resources” named after E.E. Shpilrain. Makhachkala, 2020. P. 331–339. [In Russian].
  5. Trifonov K.I., Zabotin I.F., Katyshev S.F., Nikiforov A.F. Elektroprovodnost› rasplavov smesey trikhlorida gadoliniya s khloridami natriya i kaliya [Electrical conductivity of melts of mixtures of gadolinium trichloride with sodium and potassium chlorides] // Rasplavy. № 6. 2017. P. 512–515. [In Russian].
  6. Verdiev N.N., Garkushin I.K., Burchakov A.V., Verdieva Z.N., Kondratyuk I.M., Egorova E.M. // TVT. 2021. 59. № 1. P. 82–85. [In Russian]. https://doi.org/10.31857/S0040364421010166
  7. Melikhov V.I., Melikhov O.I., Yakush S.E. // TVT. 2022. 60. № 2. P. 280–318. [In Russian]. https://doi.org/10.31857/S0040364422020284
  8. Vasina N.A., Gryzlova E.S., Shaposhnikova S.G. Teplofizicheskiye svoystva mnogokomponentnykh solevykh sistem [Thermophysical properties of multicomponent salt systems]. M.: Khimiya, 1984. [In Russian].
  9. Korovin N.V., Skundina A.M. Khimicheskiye istochniki toka: Spravochnik [Chemical current sources: Reference]. M.: MEI. 2003. 740 p. [In Russian].
  10. Zolotukhina E.V., Gubanova T.V., Garkushin I.K. // Journal. neorgan. chemistry. 2013. 58. №.7. P. 965–968. [In Russian]. https://doi.org/10.7868/S0044457X13070271
  11. Frolov E.I., Gubanova T.V., Garkushin I.K., Afanasyeva O.Yu. Trekhkomponentnyye sistemy LiF–LiBr–Li2MoO4 i LiF–LiBr–Li2CrO4 [Three-component systems LiF–LiBr–Li2MoO4 and LiF–LiBr–Li2CrO4] // Izv. VUZov. Khimiya i khim. tekhnologiya. 2009. 52. № 12. P. 129–131. [In Russian].
  12. Garkushin I.K., Demina M.A., Chudova A.A., Nenasheva A.V. // Journ. neorgan. chemistry. 2015. 60. №.1. P. 112–121. [In Russian]. https://doi.org/10.7868/S0044457X15010146
  13. Demina M.A., Egorova E.M., Garkushin I.K., Burchakov A.V., Ignatieva E.O. // Journal of Physics. chemistry. 2021. 95. №. 6. P. 955–957. [In Russian]. https://doi.org/10.31857/S004445372106008X
  14. Nikolaeva E.V., Bove A.L., Zakiryanova I.D. // Rasplavy. 2023. № 6. P. 552–563. [In Russian]. https://doi.org/10.31857/S0235010623060051
  15. Cherkesov Z.A., Kushkhov H.B., Kyarov A.A. // Rasplavy. 2023. № 5. P. 513–524. [In Russian]. https://doi.org/10.31857/S023501062305002X
  16. Mokhosoev M.V., Bazarova J.G. Slozhnyye oksidy molibdena i vol’frama s elementami I–IV grupp. [Complex oxides of molybdenum and tungsten with elements of groups I–IV]. M.: Nauka, 1990. [In Russian].
  17. Nikolaeva I.V., Moskvitin V.I., Fomin B. N.A. Metallurgiya legkikh metallov [Metallurgy of light metals]. M.: Metallurgy, 1997. [In Russian].
  18. Fedorov P.P., Semashko V.V., Korableva S.L. // Non-organ. materials. 2022. 58. № 3. P. 235–257. [In Russian]. https://doi.org/10.31857/S0002337X22030046
  19. Ghosh S., Ganesan R., Sridharan R., Gnanasekaran T. Study of phase equilibria in LiCl–KCl–PrCl3 pseudo-ternary system // Thermochimica Acta. 2017. 653. P. 16–26.
  20. Evdokimov A.A., Efremov V.A., Trunov V.K. and others. Soyedineniya redkozemel’nykh elementov. Molibdaty, vol’framaty [Compounds of rare earth elements. Molybdates, tungstates]. M.: Nauka, 1991. [In Russian].
  21. Voskresenskaya N.K., Evseeva N.N., Berul S.I., Vereshchetina I.P. Spravochnik po plavkosti sistem iz bezvodnykh neorganicheskikh soley [Handbook on fusibility of systems from anhydrous inorganic salts] // Moscow: Academy of Sciences of the USSR. 1961. 1. 845 p. [In Russian].
  22. Trunin A.S., Garkushin I.K., Vasilchenko L.M. Sistema Na, Ca||Cl, WO4 [System Na, Ca||Cl, WO4] // Journ. neorgan. chemistry. 1977. 22. № 2. P. 495–498. [In Russian].
  23. Sukharenko M.A., Garkushin I.K., Osipov V.T., Radchenko A.V. Fazovyye ravnovesiya v trekhkomponentnoy vzaimnoy sisteme Na+, Ba+ || Br-, WO42- [Phase equilibria in a three-component mutual system Na+, Ba+ || Br-, WO42-] // Journ. neorgan. chemistry. 2021. 66. № 10. P. 1450–1456. [In Russian].
  24. Egunov V.P. Vvedeniye v termicheskiy analiz [Introduction to thermal analysis]. Samara, 1996. [In Russian].
  25. NETZSCH Proteus Thermal Analysis v.4.8.1. NETZSCH-Gerätebau – Bayern, Germany. 2005.
  26. Kosmynin A.S., Trunin A.S. Proyektsionno-termograficheskiy metod issledovaniya geterogennykh ravnovesiy v kondensirovannykh mnogokomponentnykh sistemakh [Projection-thermographic method for studying heterogeneous equilibria in condensed multicomponent systems]. Samara: Samara State Technical University. Univ. 2006. [In Russian].
  27. Ganin N.B. Trekhmernoye proyektirovaniye v KOMPAS-3D. Ser. Proyektirovaniye [Three-dimensional design in COMPASS-3D. Ser. Design]. M.: Publishing House - DMK Press, 2012. [In Russian].
  28. Burchakov A.V., Dvoryanova E.M., Kondratyuk I.M. Geometricheskoye modelirovaniye fazovogo kompleksa v trekhkomponentnykh sistemakh na primere sistemy NaF–KF–CsF [Geometric modeling of a phase complex in three-component systems on the example of the NaF–KF–CsF system] // III International Scientific. Internet conference in 2 vols. 2015. 1. P. 56–62.
  29. Ganin N.B. Proyektirovaniye i prochnostnoy raschet v sisteme KOMIIAC-3D V13 [Design and strength calculation in the KOMIIAC-3D V13 system]. M.: DMK Press. 2011. [In Russian].
  30. ASKON – Design Systems LLC [Electronic resource] URL: https://kompas.ru/ (аccessed 10/27/2023).
  31. Burchakov A.V. Modelirovaniye fazovogo kompleksa mnogokomponentnykh sistem s uchastiyem khromatov i galogenidov shchelochnykh metallov [Modeling of the phase complex of multicomponent systems involving chromates and alkali metal halides]. Diss... scientific degree of candidate of chemistry sciences. Samara: Sam. GTU. 2016. [In Russian].
  32. Burchakov A.V., Garkushin I. K., Milov S. N., etc. Prognozirovaniye fazovykh ravnovesiy v sisteme NaCl-Na2MoO4–Na2WO4 na granitse “zhidkost’-tverdoye telo” [Prediction of phase equilibria in the NaCl–Na2MoO4–Na2WO4 system at the liquid-solid boundary] // Butlerovskiye soobshcheniya. 2019. 60. № 10. P. 124–139. [In Russian].
  33. Kurnakov N.S. Izbrannyye trudy: V 3 t. [Selected works: In 3 volumes]. M.: USSR Academy of Sciences. 1960–1961, 1963. [In Russian].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences