MOLECULAR DYNAMICS SIMULATION OF MOLTEN NiF2: STRUCTURE AND TRANSPORT PROPERTIES


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Computer modeling of molten nickel fluoride was carried out using classical molecular dynamics in the temperature range 1750–1900 K. The density of crystalline NiF2 with a relative error of less than 1% verified the parameters of the pair potential obtained in the framework of the quantum-chemical approximation. The calculated radial distribution functions and coordination numbers for the Ni–F pair indicate a distorted octahedral environment of the nickel cation in the melt. In this case, a slight decrease in the nearest cation-anion distance was found in comparison with solid nickel fluoride. It is shown that the curve of the radial distribution function for the fluorine-fluorine pair near the main peak splits into two maxima. The position of the first peak at 2.67 Å is characterized by a coordination number of 5.1 and describes neighboring anions in a distorted octahedron. Whereas, the second maximum can be associated with fluorine anions located along the F–Ni–F line with a peak position at 3.83 Å, which indicates a decrease in a similar distance compared to the crystal. The coefficients of self-diffusion of ions and the viscosity of the NiF2 melt at different temperatures were calculated.

Sobre autores

М. Kobelev

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Autor responsável pela correspondência
Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

D. Zakiryanov

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

V. Tukachev

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

Bibliografia

  1. Jiang D., Zhang D., Li X., Wang S., Wang C., Qin H., Guo Y., Tian W., Su G.H., Qiu S // Renew. Sustain. Energy Rev. 2022. 161. P. 112345. https://doi.org/10.1016/j.rser.2022.112345
  2. Karfidov E., Nikitina E., Erzhenkov M., Seliverstov K., Chernenky P., Mullabaev A., Tsvetov V., Mushnikov P., Karimov K., Molchanovs N., Kuznetsova A. // Materials. 2022. 15. P. 761. https://doi.org/10.3390/ma15030761
  3. Ocadiz-Flores J.A., Capelli E., Raison P.E., Konings R.J.M., Smith A.L. // J. Chem. Thermodyn. 2018. 121. P. 17–26. https://doi.org/10.1016/j.jct.2018.01.023
  4. Wood N.D., Howe R.A. // J. Phys. C: Solid State Phys. 1988. 21. P. 3177–3190. https://doi.org/10.1088/0022-3719/21/17/009
  5. Tasseven C., Alcaraz O., Trullàs J., Silbert M. // High Temp. Mater. Process. 1998. 17. P. 163–176. https://doi.org/10.1515/HTMP.1998.17.3.163
  6. Zakiryanov D., Kobelev M., Tkachev N. // Russian Metallurgy. 2022. № 8. P. 972–977. https://doi.org/10.1134/S0036029522080250
  7. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Phase Equil. 2020. 506. P. 112369. https://doi.org/10.1016/j.fluid.2019.112369
  8. CRC Handbook of Chemistry and Physics, 95th Edition, ed. Haynes, William M, CRC Press, 2014.
  9. Stout J.W., Reed S.A. // J. Am. Chem. Soc. 1954. 76. P. 5279–5281. https://doi.org/10.1021/ja01650a005
  10. Young J.P., Smith G.P. // J. Chem. Phys. 1964. 40. P. 913–914. http://dx.doi.org/10.1063/1.1725233
  11. Zakiryanov D. // Comput. Theor. Chem. 2022. 1210. P. 113646. https://doi.org/10.1016/j.comptc.2022.113646

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (25KB)
3.

Baixar (962KB)
4.

Baixar (98KB)
5.

Baixar (106KB)
6.

Baixar (26KB)
7.

Baixar (24KB)

Declaração de direitos autorais © М.А. Кобелев, Д.О. Закирьянов, В.А. Тукачев, 2023