THERMOCHEMICAL STUDY OF THE FORMATION OF SILICIDES, BORIDES, CARBIDES IN Fe–Ni–Cr–Cu–Si–B–C ALLOY
- Authors: Kapsalamova F.R.1, Krasikov S.А.2,3, Terlikbayeva A.Z.1, Zhilina E.M.2, Alimzhanova A.M.1
-
Affiliations:
- National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan
- Institute of Metallurgy, Ural Branch of the RAS
- Ural State Mining University
- Issue: No 4 (2023)
- Pages: 414-425
- Section: Articles
- URL: https://rjraap.com/0235-0106/article/view/661285
- DOI: https://doi.org/10.31857/S0235010623040023
- EDN: https://elibrary.ru/XHILTR
- ID: 661285
Cite item
Abstract
To determine thermochemical characteristics: enthalpy, molar heat capacity and Gibbs energy of formation of silicides, borides and carbides in an alloy of a given composition (40Fe–31Ni–16Cr–5Cu–5Si–2B–1C) calculation methods were used using mixed GGA and GGA + U schemes (semi-empirically tuned generalized gradient approximations). Three modules of the HSC Chemistry 6.0 software package (Metso Outotec, version 6.0, Espoo, Finland) were used in the study. First, the “Reaction Equation” module was used to calculate the change in Gibbs free energy at different temperatures. Secondly, to calculate the composition of each chemical in the equilibrium state, the module “Equilibrium Composition” was used (“Equilibrium compositions” – calculation of equilibrium compositions of phases in the presence of reversible chemical reactions). Thirdly, the module “H, S, C and G diagrams” (“Graphs of thermodynamic functions” – plotting thermodynamic functions) was used to determine the relative phase stability of compounds depending on temperature in the form of Ellingham diagrams. The results of thermochemical modeling showed that the temperature dependences of the heat capacity of the formation of hardening compounds in the alloy increase with increasing temperature. Thermodynamic calculations of the enthalpies of the hardening phases in the alloy showed that at temperatures >1400°C, silicides, borides, and carbides are formed. ∆G(T) of silicides, there is an increase in the values of the Gibbs energy and a tendency towards stability with increasing temperature. During the formation of borides in the alloy, one can see a strong absorption of heat, an increase in the Gibbs energy in the studied temperature range. The results of calculating the Gibbs energy as a function of temperature showed the formation of carbides Ni3C, Fe3C, SiC, B4C, Cr3C2, Cr4C, Cr7C3. The formation of phases occurs with a decrease in the values of the Gibbs energy to a temperature of ~1500°C. A further increase in temperature indicates the absorption of heat, which is associated with a high ordering temperature of the carbide structures. Thus, the thermochemical study justified the formation of silicides, borides, carbides in the alloy 40Fe–31Ni–16Cr–5Cu–5Si–2B–1C.
Keywords
About the authors
F. R. Kapsalamova
National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan
Author for correspondence.
Email: faridakapsalamova@gmail.com
Kazakhstan, Almaty
S. А. Krasikov
Institute of Metallurgy, Ural Branch of the RAS; Ural State Mining University
Author for correspondence.
Email: sankr@mail.ru
Russia, Yekaterinburg; Russia, Yekaterinburg
A. Zh. Terlikbayeva
National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan
Email: sankr@mail.ru
Kazakhstan, Almaty
E. M. Zhilina
Institute of Metallurgy, Ural Branch of the RAS
Email: sankr@mail.ru
Russia, Yekaterinburg
A. M. Alimzhanova
National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan
Email: sankr@mail.ru
Kazakhstan, Almaty
References
- Tolokonnikova V., Baisanov S., Yerekeyeva G., Narikbayeva G., Korsukova I. Thermodynamic-diagram analysis of the Fe–Si–Al–Mn system with the construction of diagrams of phase relations // Metalurgija. 2022. 61. № 3–4. P. 828–830. https://hrcak.srce.hr/clanak/397172
- Baisanov S., Tolokonnikova V., Narikbayeva G., Korsukova I. Thermodynamic substantiation of compositions of silicon aluminium alloys with increased aluminium content in Fe–Si–Al system // Complеx Use of Mineral Resources. 2022. 321. № 2. P. 31–37.
- Shevko V.M., Aitkulov D.K., Amanov D.D., Badikova A.D., Tuleyev M.A. Thermodynamic modeling calciumcarbide and a ferroalloy formation from a system of the daubaba deposit basalt – Carbon – Iron // News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2019. 1. № 433. P. 98–106.
- Lemire R.J. Chemical Thermodynamics of Iron, Part I. – Boulogne-Billancourt (France): OECD // Chemical Thermodynamics (OECD, TDB-NEA). 2013. 13a.
- Lemire R.J., Berner U., Musikas C., Palmer D.A., Taylor P., Tochiyama O., Perrone J. Chemical Thermodynamics of Iron, Part II. – Boulogne-Billancourt (France): OECD, // Chemical Thermodynamics (OECD, TDB-NEA). 2020. 13b.
- Il’inykh N.I., Kulikova T.V., Moiseyev G.K. Sostav i ravnovesnyye kharakteristiki metallicheskikh rasplavov binarnykh sistem na osnove zheleza, nikelya i alyuminiya [Composition and equilibrium characteristics of metallic melts of binary systems based on iron, nickel and aluminum]. Yekaterinburg: UrO RAN, 2006. [In Russian].
- Khasuy A. Tekhnika napyleniya [Spraying technique]. M.: Mashinostroyeniye, 1975. [In Russian].
- Ageyev N.G., Naboychenko S.S. Metallurgicheskiye raschety s ispol’zovaniyem paketa prikladnykh programm HSC Chemistry: ucheb. posobiye [Metallurgical calculations using the HSC Chemistry application package]. Yekaterinburg: Publishing House Ural University, 2016. [In Russian].
- Bannykh O.A., Budberg P.B., Alisova S.P. Diagrammy sostoyaniya dvoynykh i mnogokomponentnykh sistem na osnove zheleza [State diagrams of iron-based binary and multicomponent systems]. Metallurgiya. 1986. [In Russian].
- Kubaschewski O. Iron-Binary phase diagrams. Springer Science & Business Media, 2013.
- Xiong W., Selleby M., Chen Q., Du J.O.Y. Phase equilibria and thermodynamic properties in the Fe–Cr system //Critical Reviews in Solid State and Materials Sciences. 2010. 35. № 2. Р. 125–152.
- Jain D., Isheim D., Hunter A.H., Seidman D.N. // Metall. Mater. Trans. 2016. A47. № 3872. Р. 3860–3872. https://doi.org/10.1007/s11661-016-3569-5
- Okamoto H. The C–Fe (carbon–iron) system // Journal of Phase Equilibria. 1992. 13. № 5. Р. 543–565.
- Moiseyev G.K., Vatolin N.A. O vozmozhnosti soglasovaniya standartnykh ental’piy obrazovaniya (SEO) rodstvennykh, binarnykh i kvazibinarnykh neorganicheskikh sistem [On the possibility of harmonizing the standard enthalpies of formation (SEA) of related, binary and quasi-binary inorganic systems] // Doklady RAN. 1999. 2. № 367/2. P. 208–214. [In Russian].
- Ryabukhin A.G., Gruba O.N. Raschety standartnykh ental’piy i energiy Gibbsa obrazovaniya karbidov khroma proizvol’nogo sostava [Calculations of standard enthalpies and Gibbs energies of formation of chromium carbides of arbitrary composition] // Vestnik YUUrGU. 2005. № 10. P. 9–13. [In Russian].
- Dreizin E.L., Schoenitz M. Mechanochemically prepared reactive and energetic materials: a review // J. Mater. Sci. 2017. 52. P. 11789–11809.
- Azabou M., Ibn Gharsallah H., Escoda L., Suñol J.J., Kolsi A.W., Khitouni M. Mechanochemical reactions in nanocrystalline Cu–Fe system induced by mechanical alloying in air atmosphere // Powder Technol. 2012. 224. Р. 338–344.
- Mao H., Chen H.-L., Chen Q. TCHEA1: a thermodynamic database not limited for “high entropy” alloys // J. Phase Equilib. Diff. 2017. 38. Р. 353–368.
- Pawar S., Jha A. K., Mukhopadhyay G. // Int. J. Refr. Met. Hard Mater. 2019. 78. P. 288–295. https://doi.org/10.1016/j.ijrmhm.2018.10.014
- Gordienko S.P. // Powder Metallurgy and Metal Ceramics. 2002. 41. P. 169–172. https://doi.org/10.1023/A:1019839111434
- Vedmid’ L.B., Krasikov S.A., Zhilina Ye.M., Nikitina Ye.V., Yevdokimova I.V., Merkushev A.G. Evolyutsiya fazoobrazovaniya pri alyuminotermicheskom vosstanovlenii titana i tsirkoniya iz oksidov [Evolution of phase formation during aluminothermal reduction of titanium and zirconium from oxides] // Rasplavy. 2018. № 3. P. 330–335. [In Russian].
- Zhilina Ye.M., Krasikov S.A., Agafonov S.N. Raschet aktivnosti titana i tsirkoniya v alyumokal’tsiyevom oksidnom rasplave [Calculation of the activity of titanium and zirconium in alumina–calcium oxide melt] // Rasplavy. 2016. № 4. P. 300–306. [In Russian].
Supplementary files
