PRODUCING METHOD OF HIGH ENTROPY CARBIDE IN AN IONIC MELT


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Refractory metal carbides TiC, ZrC, HfC, NbC and TaC have excellent physical, chemical and mechanical properties as materials for ultra-high temperature ceramics. Of these, the most refractory are TaC and HfC, whose melting points approach 4000°C. It should be noted the high hardness, strength and wear resistance of refractory carbides. Hence, there is a natural interest in high-entropy carbides based on them, which are becoming an important class of new ceramic materials, since they potentially have more advanced applied properties. However, obtaining such materials by classical metallurgical methods is a difficult task. In modern research, samples of high-entropy carbides are most often synthesized using expensive special equipment (methods of plasma-spark sintering, high-energy planetary mills, etc.) and a relatively long preparation of precursors for sample production. This paper describes a new approach to the synthesis of multicomponent carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C using an electrochemical process at a temperature not exceeding 1173 K. The method is based on the phenomenon of currentless metal transfer in molten salts. After the step-by-step transfer of metals, the sample was washed from the electrolyte, then sintered in a vacuum furnace. According to X-ray phase analysis, the resulting high-entropy carbide is a single-phase solid solution with an FCC structure. The diffraction pattern of the synthesized sample is in good agreement with the calculated diffraction pattern obtained by the Debye formula for a supercell of 64 000 atoms. A compact sample of high-entropy carbide was produced by pressing a tablet 10 mm in diameter with the addition of cobalt as a matrix metal. After vacuum sintering, the sample was ground to prepare for examination on a scanning electron microscope. Elemental mapping of the sample surface was performed, which showed a satisfactory distribution of metals that make up the high-entropy carbide. The measured microhardness of the sample turned out to be less than the values found in the publications of other authors, which may be due to some residual sample porosity.

Sobre autores

A. Varaksin

Institute of Metallurgy of the Ural Branch of the RAS

Autor responsável pela correspondência
Email: vorax@yandex.ru
Russia, Yekaterinburg

S. Petrova

Institute of Metallurgy of the Ural Branch of the RAS

Email: vorax@yandex.ru
Russia, Yekaterinburg

A. Rempel

Institute of Metallurgy of the Ural Branch of the RAS

Email: vorax@yandex.ru
Russia, Yekaterinburg

Bibliografia

  1. Braic M., Braic V., Balaceanu M., Zoita C., Vladescu A., Grigore E. // Surf. Coat. Technol. 2010. 204. P. 2010–2014. https://doi.org/10.1016/j.surfcoat.2009.10.049
  2. Csanádi T., Vojtko M., Dankházi Z., Reece M.J., Dusza J. // J. Eur. Ceram. Soc. 2020. 40. P. 4774–4782. https://doi.org/10.1016/j.jeurceramsoc.2020.04.023
  3. He Y., Peng C., Xin S., Li K., Liang S., Lu X., Kang N., Xue H., Shen X., Shen T. // J. Mater. Sci. 2020. 55. P. 6754–6760. https://doi.org/10.1007/s10853-020-04471-3
  4. Du B., Liu H., Chu Y. // J. Am. Ceram. Soc. 2020. 103. P. 4063–4068. https://doi.org/10.1111/jace.17134
  5. Zhang G.J., Deng Z.Y., Kondo N., Yang J.F., Ohji T. // J. Am. Ceram. Soc. 2000. 83. P. 2330–2338. https://doi.org/10.1111/j.1551-2916.2008.02507.x
  6. Gasch M., Ellerby D., Irby E., Beckman S., Gusman M., Johnson S. // J. Mater. Sci. 2004. 39. P. 5925–5937. https://doi.org/10.1023/B:JMSC.0000041689.90456.af
  7. Sani E., Mercatelli L., Fontani D., Sans J.L., Sciti D. // J. Renew. Sustain. Energy. 2011. 3. 063107. https://doi.org/10.1063/1.3662099
  8. Liu J.X., Kan Y.M., Zhang G.J. // J. Am. Ceram. Soc. 2010. 93. P. 370–373. https://doi.org/10.1111/j.1551-2916.2009.03437.x
  9. Zhang H., Hedman D., Feng P., Han G., Akhtar F. // Dalton Trans. 2019. 48. P. 5161–5167. https://doi.org/10.1039/C8DT04555K
  10. Wang K., Chen L., Xu C., Zhang W., Liu Z., Wang Y., Ouyang J., Zhang X., Fu Y., Zhou Y. // J. Mater. Sci. Technol. 2020. 39. P. 99–105. https://doi.org/10.1016/j.jmst.2019.07.056
  11. Liu D., Gao Y., Liu J., Li K., Liu F., Wang Y., An L. // J. Eur. Ceram. Soc. 2016. 36. P. 2051–2055. https://doi.org/10.1016/j.jeurceramsoc.2016.02.014
  12. Becher P.F., Wei G.C. // J. Am. Ceram. Soc. 1984. 67. P. C-267–C-269. https://doi.org/10.1111/j.1151-2916.1984.tb19694.x
  13. Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., Ellerby D.T. // J. Am. Ceram. Soc. 2004. 87. P. 1170–1172. https://doi.org/10.1111/j.1551-2916.2004.01170.x
  14. Sarker P., Harrington T., Toher C., Oses C., Samiee M., Maria J.P., Brenner D.W., Vecchio K.S., Curtarolo S. // Nat. commun. 2018. 9. P. 4980. https://doi.org/10.1038/s41467-018-07160-7
  15. Harrington T.J., Gild J., Sarker P., Toher C., Rost C.M., Dippo O.F., McElfresh C., Kaufmann K., Marin E., Borowski L., Hopkins P.E., Luo J., Curtarolo S., Brenner D.W., Vecchio K.S. // Acta Mater. 2019. 166. P. 271–280. https://doi.org/10.1016/j.actamat.2018.12.054
  16. Yan X., Constantin L., Lu Y., Silvain J.F., Nastasi M., Cui B. // J. Am. Ceram. Soc. 2018. 101. P. 4486–4491. https://doi.org/10.1111/jace.15779
  17. Wei X.F., Liu J.X., Li F., Qin Y., Liang Y.C., Zhang G.J. // J. Eur. Ceram. Soc. 2019. 39. P. 2989–2994. https://doi.org/10.1016/j.jeurceramsoc.2019.04.006
  18. Castle E., Csanádi T., Grasso S., Dusza J., Reece M. // Sci. Rep. 2018. 8. P. 8609. https://doi.org/10.1038/s41598-018-26827-1
  19. Demirskyi D., Borodianska H., Suzuki T.S., Sakka Y., Yoshimi K., Vasylkiv O. // Scr. Mater. 2019. 164. P. 12–16. https://doi.org/10.1016/j.scriptamat.2019.01.024
  20. Ye B., Chu Y., Huang K., Liu D. // J. Am. Ceram. Soc. 2019. 102. P. 919–923. https://doi.org/10.1111/jace.16141
  21. Malinovskis P., Fritze S., Riekehr L., von Fieandt L., Cedervall J., Rehnlund D., Nyholm L., Lewin E., Jansson U. // Materi. Des. 2018. 149. P. 51–62. https://doi.org/10.1016/j.matdes.2018.03.068
  22. Braic V., Vladescu A., Balaceanu M., Luculescu C.R., Braic M. // Surf. Coat. Technol. 2012. 211. P. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033
  23. Ye B., Wen T., Huang K., Wang C.Z., Chu Y. // J. Am. Ceram. Soc. 2019. 102. P. 4344–4352. https://doi.org/10.1111/jace.16295
  24. Braic V., Balaceanu M., Braic M., Vladescu A., Panseri S., Russo A. // J. Mech. Behav. Biomed. Mater. 2012. 10. P. 197–205. https://doi.org/10.1016/j.jmbbm.2012.02.020
  25. Yang Y., Wang W., Gan G.Y., Shi X.F., Tang B.Y. // Physica B Condens. Matter. 2018. 550. P. 163–170. https://doi.org/10.1016/j.physb.2018.09.014
  26. Zhang Q., Zhang J., Li N., Chen W. // J. Appl. Phys. 2019. 126. 025101. https://doi.org/10.1063/1.5094580
  27. Chicardi E., García-Garrido C., Gotor F.J. // Ceram. Int. 2019. 45. P. 21 858–21 863. http://dx.doi.org/10.1016/j.ceramint.2019.07.195
  28. Chicardi E., García-Garrido C., Hernández-Saz J., Gotor F.J. // Ceram. Int. 2020. 46. P. 21 421–21 430. https://doi.org/10.1016/j.ceramint.2020.05.240
  29. Ye B., Wen T., Liu D., Chu Y. // Corros. Sci. 2019. 153. P. 327–332. http://dx.doi.org/10.1016/j.corsci.2019.04.001
  30. Ye B., Wen T., Chu Y. // J. Am. Ceram. Soc. 2020. 103. P. 500–507. http://dx.doi.org/10.1111/jace.16725
  31. Grasso S., Saunders T., Porwal H., Milsom B., Tudball A., Reece M. // J. Am. Ceram. Soc. 2016. 99. P. 1534–1543. https://doi.org/10.1111/jace.14158
  32. Gild J., Kaufmann K., Vecchio K., Luo J. // Scr. Mater. 2019. 170. P. 106–110. https://doi.org/10.1016/j.scriptamat.2019.05.039
  33. Feng L., Fahrenholtz W.G., Hilmas G.E., Zhou Y. // Scripta Materialia. 2019. 162. P. 90–93. https://doi.org/10.1016/j.scriptamat.2018.10.049.
  34. Ilyshenko N.G., Anfinogenov A.I., Shurov N.I. Vzaimodeystviye metallov v ionnykh rasplavakh [Interaction of metals in ion melts]. M.: Nauka. 1991. [In Russian].
  35. Smirnov M.V. Elektrodnyye potentsialy v rasplavlennykh khloridakh [Electrode potentials in molten chlorides]. M.: Nauka, 1973. [In Russian].
  36. Baraboshkin A.N. Elektrokristallizatsiya metallov iz rasplavlennykh soley [Electrocristallization of metals from molten salts]. M.: Nauka, 1976. [In Russian].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (75KB)
3.

Baixar (137KB)
4.

Baixar (1MB)
5.

Baixar (1MB)

Declaração de direitos autorais © А.В. Вараксин, С.А. Петрова, А.А. Ремпель, 2023