EFFECTIVE VISCOSITY AND GLASS TRANSITION TEMPERATURE OF Cs2O–B2O3 MELTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Effective viscosity (viscoelasticity) of cesium and boron oxides melts was measured at temperatures 900–1600 K and concentrations 0 ≤ x ≤16 mol % Cs2O by vibration viscosimetry. It was shown that vibration leads to non-Newtonian flow of melts. This means that not only configuration activation energy, the switching energy of bridging oxygen bonds but also the elastic energy of structural units of melts associated with activation energy of viscous flow. Using parameters under conditions of Newtonian and non-Newtonian flow of melts, shear viscosity η', elastic modulus G' and stored viscosity η'' were calculated. It was shown that cesium boron melts in conditions of high shear rates can be considered as liquids with viscous and elastic properties. Glass transition temperature (Tg, K) was measured by DSC, its dependence of content of cesium oxide was plotted and explained.

About the authors

A. A. Khokhryakov

Institute of Metallurgy UB RAS

Email: mari.makarenko.1993@mail.ru
Russia, Yekaterinburg

M. A. Samoilova

Institute of Metallurgy UB RAS

Author for correspondence.
Email: mari.makarenko.1993@mail.ru
Russia, Yekaterinburg

V. V. Ryabov

Institute of Metallurgy UB RAS

Email: mari.makarenko.1993@mail.ru
Russia, Yekaterinburg

L. B. Vedmid’

Institute of Metallurgy UB RAS

Email: mari.makarenko.1993@mail.ru
Russia, Yekaterinburg

References

  1. Li P.Ch., Ghose A.C., Su G.J. Density of molten boron oxide, rubidium, and cesium borates // Phys. Chem. Glasses. 1960. 1. № 6. Р. 198–204.
  2. Visser T.J.M., Stevels J.M. // J. Non-Cryst. Solids. 1972. 7. № 4. P. 376–394. https://doi.org/10.1016/0022-3093(72)90272-4
  3. Solov’yev A.N., Kaplun A.B. Vibratsionnyy metod izmereniya vyazkosti zhidkostey [Vibration method for measuring the viscosity of liquids]. Novosibirsk: Nauka, 1970. [In Russian].
  4. Shtangel’meyyer S.V. // Zavodskaya laboratoriya. 1968. № 6. P. 764. [In Russian].
  5. Kirsanov Ye.A. Nen’yutonovskiye zhidkosti [Non-Newtonian fluids]. Tekhnosfera. Moskva. 2016. [In Russian].
  6. Melchakov S.Yu., Khokhryakov A.A., Samoilova M.A., Ryabov V.V., Yagodin D.A. // Glass Physics and Chemistry. 2022. 48. P. 174–179. https://doi.org/10.1134/S1087659622030063
  7. Khokhryakov A.A., Melchakov S.Yu., Samoilova M.A., Ryabov V.V. // Inorganic materials. 2022. 58. P. 538–543. https://doi.org/10.1134/S0020168522050053
  8. Khokhryakov A.A., Samoilova M.A., Ryabov V.V., Vedmid’ L.B., Melchakov S.Yu. // Phys. Chem. Glasses 2023. 49. № 3. P. 239–244. https://doi.org/10.1134/S1087659623600102
  9. Yiannopolous Y.D., Chryssikos G.D., Kamitsos E.I. Structure and properties of alkaline earth borate glasses // Phys. Chem. Glasses. 2001. 42. P. 164–172.
  10. Kojima S. // Solids. 2020. № 1. P. 16–30. https://doi.org/10.3390/solids1010003
  11. Berryman J.R., Feller S.A., Affatigatto M., Kodama M., Meyer B.M., Martin S.W., Borsa F., Kroeker S. // J. Non-Cryst. Solids. 2001. 293–295. P. 483–489. https://doi.org/10.1016/S0022-3093(01)00754-2
  12. Franz H. Effect of water content on density, refractive index and transformation temperature of alkali borate glasses. PPG Industries, Inc., Glass Research Center.
  13. Osipov A.A., Osipova L.M., Bykov V.N. Spektroskopiya struktury i shchelochnoboratnykh stekol i rasplavov [Spectroscopy and structure of alkaline borate glasses and melts]. Yekaterinburg–Miass. UrO RAN, 2009. [In Russian].
  14. Chryssikos G.D., Kamitsos E.I., Karakassides M.A. Structure of borate glasses: 2. Alkali induced network modifications in terms of structure and properties // Phys. Chem. Glasses. 1990. 31. № 3. Р. 109–116.
  15. Osipov A.A., Osipova L.M. Struktura stekol i rasplavov sistemy Cs2O–B2O3 polucheny po dannym spektroskopii kombinatsionnogo rasseyaniya sveta [The structure of glasses and melts of the Cs2O–B2O3 system according to Raman spectroscopy data] // Fizika i khimiya stekla. 2014. 40. № 4. P. 521–534. [In Russian].
  16. Shaw R.R., Uhlmann D.R. Subliquidus immiscibility in binary alkali borates // J. Am. Ceram. Soc. 1968. 51. Р. 377–382.
  17. Osipov A.A., Osipova L.M. // Advances in Condensed Matter Physics. 2018. P. 1–8. https://doi.org/10.1155/2018/6746023

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (80KB)
3.

Download (41KB)
4.

Download (145KB)
5.

Download (529KB)
6.

Download (60KB)

Copyright (c) 2023 А.А. Хохряков, М.А. Самойлова, В.В. Рябов, Л.Б. Ведмидь