Molecular cloning and heterologous expression of GPR120 from the mouse taste tissue
- Authors: Cherkashin A.P.1, Kovalenko N.P.1, Kopylova Е.Е.1, Rogachevskaja О.А.1, Voronova Е.А.1, Kolesnikov S.S.1
-
Affiliations:
- Pushchino scientific center for biological research of the Russian Academy of Sciences
- Issue: Vol 42, No 3 (2025)
- Pages: 246-252
- Section: КРАТКИЕ СООБЩЕНИЯ
- URL: https://rjraap.com/0233-4755/article/view/686491
- DOI: https://doi.org/10.31857/S0233475525030072
- EDN: https://elibrary.ru/TCZCOC
- ID: 686491
Cite item
Abstract
The existence of fat taste along with the generally recognized taste modalities (sweet, bitter, umami, salty, and sour) is currently a subject of scientific debate and active research. Available data on the signaling cascade triggered by long-chain fatty acids (FAs) in the taste cell indicate its similarity to the transduction of sweet, bitter, and umami stimuli, but the initial stages of transduction of fatty stimuli remain unclear. A member of the G-protein-coupled receptor superfamily, GPR120, is considered as one of the candidates for the role of a long-chain FA receptor operating in the taste bud. At the same time, available reports implicating GPR120 in the FA perception by the peripheral taste system are highly contradictory. In order to create a platform for further study of the contribution of GPR120 to FA transduction, we cloned GPR120 from the mouse taste tissue and expressed it in HEK-293 cells. In contrast to the parental HEK-293 cells, GPR120-positive HEK-293 cells generated receptor-like Ca2+ transients in response to long-chain FA application, thus confirming the literature data on the coupling of the GPR120 receptor to the phosphoinositide cascade and intracellular Ca2+ mobilization. The HEK-293 cells expressing recombinant GPR120 receptor may present a useful cell model for screening natural and synthetic ligands of this receptor and analyzing its coupling to intracellular signaling pathways. Co-expression of GPR120 with other signaling proteins involved in the transduction of fatty stimuli in taste cells may be useful for interpreting taste cell responses to FAs.
Full Text

About the authors
A. P. Cherkashin
Pushchino scientific center for biological research of the Russian Academy of Sciences
Email: malehanova@mail.ru
Institute of Cell Biophysics
Russian Federation, Pushchino, 142290N. P. Kovalenko
Pushchino scientific center for biological research of the Russian Academy of Sciences
Email: malehanova@mail.ru
Institute of Cell Biophysics
Russian Federation, Pushchino, 142290Е. Е. Kopylova
Pushchino scientific center for biological research of the Russian Academy of Sciences
Email: malehanova@mail.ru
Institute of Cell Biophysics
Russian Federation, Pushchino, 142290О. А. Rogachevskaja
Pushchino scientific center for biological research of the Russian Academy of Sciences
Email: malehanova@mail.ru
Institute of Cell Biophysics
Russian Federation, Pushchino, 142290Е. А. Voronova
Pushchino scientific center for biological research of the Russian Academy of Sciences
Author for correspondence.
Email: malehanova@mail.ru
Institute of Cell Biophysics
Russian Federation, Pushchino, 142290S. S. Kolesnikov
Pushchino scientific center for biological research of the Russian Academy of Sciences
Email: malehanova@mail.ru
Institute of Cell Biophysics
Russian Federation, Pushchino, 142290References
- Jaime-Lara R.B., Brooks B.E., Vizioli C., Chiles M., Nawal N., Ortiz-Figueroa R.S.E., Livinski A.A., Agarwal K., Colina-Prisco C., Iannarino N., Hilmi A., Tejeda H.A., Joseph P.V. 2023. A systematic review of the biological mediators of fat taste and smell. Physiol. Rev. 103 (1), 855–918.
- Tsuruta M., Kawada T., Fukuwatari T., Fushiki T. 1999. The orosensory recognition of long-chain fatty acids in rats. Physiol. Behav. 66, 285–288.
- Chalé-Rush A., Burgess J.R., Mattes R.D. 2007. Multiple routes of chemosensitivity to free fatty acids in humans. J. Physiol. Gastroint .Liver Physiol. 292 (5), G1206–G1212.
- El-Yassimi A., Hichami A., Besnard P., Khan N.A. 2008. Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J. Biol. Chem. 283, 12949–12959.
- Dramane G., Abdoul-Azize S., Hichami A., Vogtle T., Akpona S., Chouabe C., Sadou H., Nieswandt B., Besnard P., Khan N.A. 2012. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J. Clin. Invest. 122, 2267–2282.
- Sclafani A., Zukerman S., Glendinning J.I., Margolskee R.F. 2007. Fat and carbohydrate preferences in mice: The contribution of alpha-gustducin and Trpm5 taste-signaling proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1504–R1513.
- Ozdener M.H., Subramaniam S., Sundaresan S., Sery O., Hashimoto T., Asakawa Y., Besnard P., Abumrad N.A., Khan N.A. 2014. CD36- and GPR120-mediated Ca2 signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 146, 995–1005.
- Gaillard D., Laugerette F., Darcel N., El-Yassimi A., Passilly-Degrace A., Hichami A., Khan N.A., Montmayeur J.P., Besnard P. 2008. The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J. 22, 1458–1468.
- Laugerette F., Passilly-Degrace P., Patris B., Niot I., Febbraio M., Montmayeur J.P., Besnard P. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115, 3177–3184.
- Abumrad N.A., el-Maghrabi M.R., Amri E.Z., Lopez E., Grimaldi P.A. 1993. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268 (24):17665–17668.
- Sclafani A., Ackroff K. 2018. Greater reductions in fat preferences in CALHM1 than CD36 knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R576–R585.
- Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. 2020. Free fatty acid receptors in health and disease. Physiol. Rev. 100, 171–210.
- Costanzo A., Liu D., Nowson C., Duesing K., Archer N., Bowe S., Keast R. 2019. A low-fat diet up-regulates expression of fatty acid taste receptor gene FFAR4 in fungiform papillae in humans: A co-twin randomised controlled trial. Br. J. Nutr. 122, 1212–1220.
- Murtaza B., Hichami A., Khan A.S., Shimpukade B., Ulven T., Ozdener M.H., Khan N.A. 2020. Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J. Lipid Res. 61, 133–142.
- Sclafani A., Zukerman S., Ackroff K. 2013. GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1490–R1497.
- Ancel D., Bernard A., Subramaniam S., Hirasawa A., Tsujimoto G., Hashimoto T., Passilly-Degrace P., Khan N.A., Besnard P. 2015. The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in mice. J. Lipid Res. 56, 369–378.
- Romanov R.A., Rogachevskaja O.A., Bystrova M.F., Jeang P., Margolskee R.F., Kolesnikov S.S. 2007. Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J. 26 (3), 657–667.
- Falomir-Lockhart L.J., Cavazzutti G.F., Giménez E., Toscani A.M. 2019. fatty acid signaling mechanisms in neural cells: Fatty acid receptors. Front Cell. Neurosci. 13, 162.
- Antollini S.S., Barrantes F.J. 2016. Fatty acid regulation of voltage- and ligand-gated ion channel function. Front. Physiol. 7, 573.
- Cartoni C., Yasumatsu K., Ohkuri T., Shigemura N., Yoshida R., Godinot N., Le Coutre J., Ninomiya Y., Damak S. 2010. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30, 8376–8382.
- Montmayeur J.P., Fenech C., Kusumakshi S., Laugerette F., Liu Z.H., Wiencis A., Boehm U. 2011. Screening for G-protein-coupled receptors expressed in mouse taste papillae. Flavour Fragrance J. 26, 223–230.
- Matsumura S., Mizushige T., Yoneda T., Iwanaga T., Tsuzuki S., Inoue K., Fushiki T. 2007. GPR expression in the rat taste bud relating to fatty acid sensing. Biomed. Res. 28, 49–55.
- Galindo M.M., Voigt N., Stein J., van Lengerich J., Raguse J.D., Hofmann T., Meyerhof W., Behrens M. 2012. G protein-coupled receptors in human fat taste perception. Chem. Senses. 37, 123–139.
- Alvarez-Curto E., Inoue A., Jenkins L., Raihan S.Z., Prihandoko R., Tobin A.B., Milligan G. 2016. Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein-coupled receptor signaling. J. Biol. Chem. 291 (53), 27147–27159.
- Atwood B.K., Lopez J., Wager-Miller J., Mackie K., Straiker A. 2011. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics. 12, 14.
- Kochkina E.N., Kopylova E.Е., Rogachevskaja O.A., Kovalenko N.P., Kabanova N.V., Kotova P.D., Bystrova M.F., Kolesnikov S.S. 2024. Agonist-induced Ca2+ signaling in HEK-293-derived cells expressing a single IP3 receptor isoform. Cells. 13, 562.
- Hirasawa A., Tsumaya K., Awaji T., Katsuma S., Adachi T., Yamada M., Sugimoto Y., Miyazaki S., Tsujimoto G. 2005. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11 (1), 90–94.
Supplementary files
