Specific and non-specific changes in plasmalemma lipid content induced by different types of abiotic stress
- Authors: Ozolina N.V.1, Kapustina I.S.1, Gurina V.V.1, Spiridonova E.V.1, Nurminsky V.N.1
-
Affiliations:
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences
- Issue: Vol 42, No 3 (2025)
- Pages: 235-245
- Section: Articles
- URL: https://rjraap.com/0233-4755/article/view/686490
- DOI: https://doi.org/10.31857/S0233475525030061
- EDN: https://elibrary.ru/TCZGMB
- ID: 686490
Cite item
Abstract
Effects of different abiotic stresses (hyperosmotic, hypoosmotic, and oxidative) on the lipid profile of the plasma membrane of table beet root cells (Beta vulgaris L.) were studied. Changes in the composition of membrane lipids under different types of stress had their distinctive features. The content of such lipids as phosphatidylethanolamines, phosphatidylglycerols, monogalactosyldiacylglycerides (MGDG), pentodecanoic fatty acid, cholesterol and stigmasterol, decreased under all types of stress, while the content of digalactosyldiacylglycerides (DGDG), arachic fatty acid and β-sitosterol and the DGDG/MGDG ratio increased under all types of stress. These effects of stress can be classified as nonspecific. However, for some lipids, stress-induced changes in their content depended on the type of stress. For example, the content of sphingolipids increased significantly under hyperosmotic stress and decreased under hypoosmotic and oxidative stress. In contrast, the content of sterols increased under hypoosmotic stress and decreased under hyperosmotic stress, and the content of sterol esters increased only under oxidative stress. Changes in the composition of these lipids can be regarded as specific. Changes in the content of phosphatidic acid, phosphatidylserines, phosphatidylinositols, phosphatidylcholines, and most fatty acids, as well as in ratio of phosphatidylcholines to phosphatidylethanolamines and some other parameters can also be attributed to specific. In conclusion, this study demonstrates that different types of abiotic stress induce different changes in membrane lipid content. These results may contribute to a better understanding of adaptation mechanisms and help in the development of new strategies to improve plant stress resistance.
Full Text

About the authors
N. V. Ozolina
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences
Author for correspondence.
Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
I. S. Kapustina
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences
Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
V. V. Gurina
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences
Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
E. V. Spiridonova
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences
Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
V. N. Nurminsky
Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences
Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033
References
- Chaudhry S., Sidhu G. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 41 (1), 1–31. https://doi.org/10.1007/s00299-021-02759-5
- Liu X., Ma D., Zhang Z., Wang S., Dua S., Deng X., Yin L. 2019. Plant lipid remodeling in response to abiotic stresses. Environ. Exp. Bot. 165, 174–184. https://doi.org/10.1016/j.envexpbot.2019.06.005
- Su K., Bremer D.J., Jeannotte R., Welti R., Yang C. 2009. Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass. J. Amer. Soc. Hort. Sci. 134, 511–520. https://doi.org/10.21273/JASHS.134.5.511
- Narayanan S., Tamura P.J., Roth M.R., Vara Prasad P.V., Welti R. 2015. Wheat leaf lipid composition during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 39 (4), 787–803. https://doi.org/10.1111/pce.12649
- Чудинова Л.А., Орлова Н.В. 2006. Физиолоия устойчивости растений: учебное пособие. Пермь: Изд-во Перм. гос. ун-та. 124 с.
- Пятыгин С.С. 2008. Стресс у растений: физиологический подход. Журн. общ. биол. 69 (4), 294–298.
- Larsson C., Widell S., Kjellbon P. 1987. Preparation of high-purity plasma membranes. Methods Enzymol. 14, 558–568. https://doi.org/10.1016/0076-6879(87)48054-3
- Ozolina N.V., Kapustina I.S., Gurina V.V., Bobkova V.A., Nurminsky V.N. 2021. Role of plasmalemma microdomains (rafts) in protection of the plant cell under osmotic stress. J. Membr. Biol. 254 (4), 429–439. https://doi.org/10.1007/s00232-021-00194-x
- Ozolina N.V., Gurina V.V., Nesterkina I.S., Nurminsky V.N. 2020. Variations in the content of tonoplast lipids under abiotic stress. Planta. 251, 107. https://doi.org/10.1007/s00425-020-03399-x
- Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Ozolina N.V., Kapustina I.S., Gurina V.V., Spiridonova E.V., Nurminsky V.N. 2024. Influence of oxidative stress upon the lipid composition of raft structures of the vacuolar membrane. Rus. J. Plant Phys. 71, 29. https://doi.org/10.1134/S102144372460449X
- Jouhet J. 2013. Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci. 4, 494. https://doi.org/10.3389/fpls.201300494
- Rawata N., Singla-Pareek S.L., Pareek A. 2021. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plant. 171, 653–676. https://doi.org/10.1111/ppl.13217
- Wang X. 2004. Lipid signaling. Curr. Opin. Plant Biol. 7, 329–336. https://doi.org/10.1016/j.pbi.2004.03.012
- Wu J, Seliskar D.M., Gallagher J.L. 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Am. J. Bot. 92, 852–858. https://doi.org/10.3732/ajb.92.5.852
- Yeagle P.L. 1989. Lipid regulation of cell membrane structure and function. FASEB J. 3, 1833–1842.
- Attard G.S., Templer R.H., Smith W.S., Hunt A.N., Jackowski S. 2000. Modulation of CTP: Phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA. 97, 9032–9036.
- Latowski D., Akerlund H.E., Strzalka K. 2004. Violaxanthin de-epoxidase, the xanthophylls cycle enzyme, required lipid inverted hexagonal structures for its activity. Biochemistry. 43, 4417–4420.
- Vogler O., Casas J., Capo D., Nagy T., Borchert G., Martorell G., Escriba P.V. 2004. The Gbetagamma dimer drives the interaction of heterotrimeric Gi proteins with nonlamellar membrane structures. J. Biol. Chem. 279, 36540–36545.
- Tenchov B., Koynova R. 2012. Cubic phases in membrane lipids. Eur. Biophys. J. 41, 841–850.
- Almsherqi Z.A., Kohlwein S.D., Deng Y. 2006. Cubic membranes: A legend beyond the Flatland of cell membrane organization. J. Cell Biol. 19, 839–844.
- De Kruijff B. 1997. Lipid polimorfism and biomembrane function. Opin. Chem. Biol. 1. 564–569.
- Wu S., Hu C., Yang X., Tan Q., Yao S., Zhou Y., Wang X., Sun X. 2020. Molybdenum induces alterations in the glycerolipidome that confer drought tolerance in wheat. J. Exp. Bot. 71 (16), 5074–5086. https://doi.org/10.1093/jxb/eraa215
- Okazaki Y., Saito K. 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J. 79 (4), 584–596. https://doi.org/10.1111/tpj.12556
- Zhou Y., Pan X., Qu H., Underhill S.J. 2014. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. J. Bioenerg. Biomembr. 46, 59–69. https://doi.org/10.1007/s10863-013-9538-4
- Xue H.-W., Chen X., Mei Y. 2009. Function and regulation of phospholipid signaling in plants. Biochem. J. 421, 145–156. https://doi.org/10.1042/BJ20090300
- Berridge M.J., Irvine R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 312 (5992), 315.
- Omoto E., Iwasaki Y., Miyaki H., Taniguchi M. 2016. Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol. Plant. 157 (1), 13–23. https://doi.org/10.1111/ppl.12404
- Валитова Ю.Н., Сулкарнаева Ф.Г., Минибаева Ф.В. 2016. Растительные стерины: многообразие, биосинтез, физиологические функции. Биохимия. 81 (8), 1050–1068. https://doi.org/10.1134/S0006297916080046
- Kumar M.S., Ali K., Dahuia A., Tyagi A. 2015. Role of phytosterols in drought stress tolerance in rice. Plant Phys. Biochem. 96, 83–89.
- Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509.
- Hidayathulla S., Shahat A.A., Ahamad S.R., Moqbil A.N., Alsaid M.S., Divakar D.D. 2018. GC/MS analysis and characterization of 2-hexadecen-1-ol and beta sitosterol from Schimpera Arabica extract for its bioactive potential as antioxidant and antimicrobial. J. Appl. Microbiol. 124,1082–1091. https://doi.org/10.1111/jam.13704
- Жигачева И.В., Бурлакова Е.Б., Мишарина Т.А., Теренина М.Б., Крикунова Н.И., Генерозова И.П., Шугаев А.Г., Фаттахов С.Г. 2013. Жирнокислотный состав липидов мембран и энергетика митохондрий проростков гороха в условиях дефицита воды. Физиол. раст. 60 (2), 205–213. https://doi.org/10.1134/S1607672911020104
- Badea C., Basu S.K. 2009. Effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant OMICS. 2 (2), 78–84. https://www.pomics.com/Saikat_2_2_2009_78_84.pdf
- Gigon A., Matos A.-R., Laffray D., Zuily-Fodil Y., Pham-Thi A.-T. 2004. Effect of drought on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann. Bot. 94 (3), 345–351. https://doi.org/10.1093/aob/mch150
Supplementary files
