Specific and non-specific changes in plasmalemma lipid content induced by different types of abiotic stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Effects of different abiotic stresses (hyperosmotic, hypoosmotic, and oxidative) on the lipid profile of the plasma membrane of table beet root cells (Beta vulgaris L.) were studied. Changes in the composition of membrane lipids under different types of stress had their distinctive features. The content of such lipids as phosphatidylethanolamines, phosphatidylglycerols, monogalactosyldiacylglycerides (MGDG), pentodecanoic fatty acid, cholesterol and stigmasterol, decreased under all types of stress, while the content of digalactosyldiacylglycerides (DGDG), arachic fatty acid and β-sitosterol and the DGDG/MGDG ratio increased under all types of stress. These effects of stress can be classified as nonspecific. However, for some lipids, stress-induced changes in their content depended on the type of stress. For example, the content of sphingolipids increased significantly under hyperosmotic stress and decreased under hypoosmotic and oxidative stress. In contrast, the content of sterols increased under hypoosmotic stress and decreased under hyperosmotic stress, and the content of sterol esters increased only under oxidative stress. Changes in the composition of these lipids can be regarded as specific. Changes in the content of phosphatidic acid, phosphatidylserines, phosphatidylinositols, phosphatidylcholines, and most fatty acids, as well as in ratio of phosphatidylcholines to phosphatidylethanolamines and some other parameters can also be attributed to specific. In conclusion, this study demonstrates that different types of abiotic stress induce different changes in membrane lipid content. These results may contribute to a better understanding of adaptation mechanisms and help in the development of new strategies to improve plant stress resistance.

Full Text

Restricted Access

About the authors

N. V. Ozolina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033

I. S. Kapustina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033

V. V. Gurina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033

E. V. Spiridonova

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033

V. N. Nurminsky

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russian Federation, Irkutsk, 664033

References

  1. Chaudhry S., Sidhu G. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 41 (1), 1–31. https://doi.org/10.1007/s00299-021-02759-5
  2. Liu X., Ma D., Zhang Z., Wang S., Dua S., Deng X., Yin L. 2019. Plant lipid remodeling in response to abiotic stresses. Environ. Exp. Bot. 165, 174–184. https://doi.org/10.1016/j.envexpbot.2019.06.005
  3. Su K., Bremer D.J., Jeannotte R., Welti R., Yang C. 2009. Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass. J. Amer. Soc. Hort. Sci. 134, 511–520. https://doi.org/10.21273/JASHS.134.5.511
  4. Narayanan S., Tamura P.J., Roth M.R., Vara Prasad P.V., Welti R. 2015. Wheat leaf lipid composition during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 39 (4), 787–803. https://doi.org/10.1111/pce.12649
  5. Чудинова Л.А., Орлова Н.В. 2006. Физиолоия устойчивости растений: учебное пособие. Пермь: Изд-во Перм. гос. ун-та. 124 с.
  6. Пятыгин С.С. 2008. Стресс у растений: физиологический подход. Журн. общ. биол. 69 (4), 294–298.
  7. Larsson C., Widell S., Kjellbon P. 1987. Preparation of high-purity plasma membranes. Methods Enzymol. 14, 558–568. https://doi.org/10.1016/0076-6879(87)48054-3
  8. Ozolina N.V., Kapustina I.S., Gurina V.V., Bobkova V.A., Nurminsky V.N. 2021. Role of plasmalemma microdomains (rafts) in protection of the plant cell under osmotic stress. J. Membr. Biol. 254 (4), 429–439. https://doi.org/10.1007/s00232-021-00194-x
  9. Ozolina N.V., Gurina V.V., Nesterkina I.S., Nurminsky V.N. 2020. Variations in the content of tonoplast lipids under abiotic stress. Planta. 251, 107. https://doi.org/10.1007/s00425-020-03399-x
  10. Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  11. Ozolina N.V., Kapustina I.S., Gurina V.V., Spiridonova E.V., Nurminsky V.N. 2024. Influence of oxidative stress upon the lipid composition of raft structures of the vacuolar membrane. Rus. J. Plant Phys. 71, 29. https://doi.org/10.1134/S102144372460449X
  12. Jouhet J. 2013. Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci. 4, 494. https://doi.org/10.3389/fpls.201300494
  13. Rawata N., Singla-Pareek S.L., Pareek A. 2021. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plant. 171, 653–676. https://doi.org/10.1111/ppl.13217
  14. Wang X. 2004. Lipid signaling. Curr. Opin. Plant Biol. 7, 329–336. https://doi.org/10.1016/j.pbi.2004.03.012
  15. Wu J, Seliskar D.M., Gallagher J.L. 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Am. J. Bot. 92, 852–858. https://doi.org/10.3732/ajb.92.5.852
  16. Yeagle P.L. 1989. Lipid regulation of cell membrane structure and function. FASEB J. 3, 1833–1842.
  17. Attard G.S., Templer R.H., Smith W.S., Hunt A.N., Jackowski S. 2000. Modulation of CTP: Phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA. 97, 9032–9036.
  18. Latowski D., Akerlund H.E., Strzalka K. 2004. Violaxanthin de-epoxidase, the xanthophylls cycle enzyme, required lipid inverted hexagonal structures for its activity. Biochemistry. 43, 4417–4420.
  19. Vogler O., Casas J., Capo D., Nagy T., Borchert G., Martorell G., Escriba P.V. 2004. The Gbetagamma dimer drives the interaction of heterotrimeric Gi proteins with nonlamellar membrane structures. J. Biol. Chem. 279, 36540–36545.
  20. Tenchov B., Koynova R. 2012. Cubic phases in membrane lipids. Eur. Biophys. J. 41, 841–850.
  21. Almsherqi Z.A., Kohlwein S.D., Deng Y. 2006. Cubic membranes: A legend beyond the Flatland of cell membrane organization. J. Cell Biol. 19, 839–844.
  22. De Kruijff B. 1997. Lipid polimorfism and biomembrane function. Opin. Chem. Biol. 1. 564–569.
  23. Wu S., Hu C., Yang X., Tan Q., Yao S., Zhou Y., Wang X., Sun X. 2020. Molybdenum induces alterations in the glycerolipidome that confer drought tolerance in wheat. J. Exp. Bot. 71 (16), 5074–5086. https://doi.org/10.1093/jxb/eraa215
  24. Okazaki Y., Saito K. 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J. 79 (4), 584–596. https://doi.org/10.1111/tpj.12556
  25. Zhou Y., Pan X., Qu H., Underhill S.J. 2014. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. J. Bioenerg. Biomembr. 46, 59–69. https://doi.org/10.1007/s10863-013-9538-4
  26. Xue H.-W., Chen X., Mei Y. 2009. Function and regulation of phospholipid signaling in plants. Biochem. J. 421, 145–156. https://doi.org/10.1042/BJ20090300
  27. Berridge M.J., Irvine R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 312 (5992), 315.
  28. Omoto E., Iwasaki Y., Miyaki H., Taniguchi M. 2016. Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol. Plant. 157 (1), 13–23. https://doi.org/10.1111/ppl.12404
  29. Валитова Ю.Н., Сулкарнаева Ф.Г., Минибаева Ф.В. 2016. Растительные стерины: многообразие, биосинтез, физиологические функции. Биохимия. 81 (8), 1050–1068. https://doi.org/10.1134/S0006297916080046
  30. Kumar M.S., Ali K., Dahuia A., Tyagi A. 2015. Role of phytosterols in drought stress tolerance in rice. Plant Phys. Biochem. 96, 83–89.
  31. Los D.A., Mironov K.S., Allakhverdiev S.I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 343, 489–509.
  32. Hidayathulla S., Shahat A.A., Ahamad S.R., Moqbil A.N., Alsaid M.S., Divakar D.D. 2018. GC/MS analysis and characterization of 2-hexadecen-1-ol and beta sitosterol from Schimpera Arabica extract for its bioactive potential as antioxidant and antimicrobial. J. Appl. Microbiol. 124,1082–1091. https://doi.org/10.1111/jam.13704
  33. Жигачева И.В., Бурлакова Е.Б., Мишарина Т.А., Теренина М.Б., Крикунова Н.И., Генерозова И.П., Шугаев А.Г., Фаттахов С.Г. 2013. Жирнокислотный состав липидов мембран и энергетика митохондрий проростков гороха в условиях дефицита воды. Физиол. раст. 60 (2), 205–213. https://doi.org/10.1134/S1607672911020104
  34. Badea C., Basu S.K. 2009. Effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant OMICS. 2 (2), 78–84. https://www.pomics.com/Saikat_2_2_2009_78_84.pdf
  35. Gigon A., Matos A.-R., Laffray D., Zuily-Fodil Y., Pham-Thi A.-T. 2004. Effect of drought on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann. Bot. 94 (3), 345–351. https://doi.org/10.1093/aob/mch150

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Quantitative content of the main classes of plasma membrane lipids from control roots and roots subjected to abiotic stress, %. The data were obtained by TLC densitometry; n = 5; * – presence of significant differences, the significance of differences was calculated using the Kruskal–Wallis H-test, subsequent multiple comparison of medians was performed using the Student–Newman–Keuls method. Differences between the experimental data were considered statistically significant at p < 0.05. DGDG – digalactosyldiacylglycerides; MGDG – monogalactosyldiacylglycerides; PM – plasma membrane; SF – sphingolipids; PG – phosphatidylglycerols; PI – phosphatidylinositols; PC – phosphatidic acid; PS – phosphatidylserines; PC – phosphatidylcholines; PE – phosphatidylethanolamines.

Download (489KB)
3. Fig. 2. Quantitative content of the main classes of plasma membrane sterols from control root crops and root crops subjected to abiotic stress, wt. %. Data were obtained by GC-MS; n = 5; Me, * – presence of significant differences, the significance of differences was calculated using the Kruskal–Wallis H-test, subsequent multiple comparison of medians was performed using the Student–Newman–Keuls method. Differences between experimental data were considered statistically significant at p < 0.05.

Download (264KB)
4. Fig. 3. Changes in the double bond index (DBI), the sum of saturated (Σ SFA) and unsaturated fatty acids (ΣUNFA) and their ratio under different types of abiotic stress (ΣUNFA/ΣUNFA).

Download (210KB)

Copyright (c) 2025 The Russian Academy of Sciences