In silico evaluation of the effect of geometrical configuration and charge of opioid antagonists on their binding to opioid receptors
- Authors: Krivorotov D.V.1, Belinskaia D.A.2, Smirnov A.S.3, Suslonov V.V.3, Goncharov N.V.2, Kuznetsov V.A.1
-
Affiliations:
- Research Institute of Hygiene, Occupational Pathology and Human Ecology
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- St.-Petersburg State University
- Issue: Vol 42, No 3 (2025)
- Pages: 209-225
- Section: Articles
- URL: https://rjraap.com/0233-4755/article/view/686472
- DOI: https://doi.org/10.31857/S0233475525030048
- EDN: https://elibrary.ru/TDEMAQ
- ID: 686472
Cite item
Abstract
The effect of the geometric configuration and charge of molecules of opioid receptor (OR) agonists and antagonists on binding to mu-, delta-, and kappa-opioid receptors was studied using the molecular docking method. For the docking procedure, we used the three-dimensional structures of the ligands obtained by X-ray diffraction analysis and available in the Cambridge Crystallographic Data Centre (CCDC), as well as their three-dimensional models built in a molecular editor. The three-dimensional crystal structure of nalmefene, which is absent from the CCDC database, was obtained for the first time in the presented study by X-ray diffraction analysis. Protonated and deprotonated forms of the ligands were tested. The results of the study using the example of morphine, codeine, naloxone, naltrexone, and nalmefene showed that the method of obtaining three-dimensional geometric structures of OR ligands has no effect on the calculated values of the free energy of binding ΔG, which indicates the possibility of using ligand models constructed in silico in computational experiments. The protonation state of the ligand molecule, on the contrary, has a significant effect on the free energy of binding to OR, which can affect the properties of this group of drugs when pH values in the body change. When considering the peculiarities of binding of opioid enantiomers into the ligand-binding center of mu-opioid receptors using the example of morphine, it was shown that (–)-morphine and (+)-morphine share a common site for the cationic group, and not for the phenolic hydroxyl, as was previously assumed. At the same time, studies have shown that molecular docking only partially allows describing the pharmacological action of analgesics and their antagonists. For some substances, such as codeine and synthetic (+)-morphine, in silico experiments there was an overestimation of the effectiveness of the interaction of the drug with the OR, which requires continued improvement of the corresponding calculation methods and models.
Full Text

About the authors
D. V. Krivorotov
Research Institute of Hygiene, Occupational Pathology and Human Ecology
Author for correspondence.
Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 188663
D. A. Belinskaia
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 194223
A. S. Smirnov
St.-Petersburg State University
Email: denis.krivorotov@bk.ru
Russian Federation, Petergof, St. Petersburg, 198504
V. V. Suslonov
St.-Petersburg State University
Email: denis.krivorotov@bk.ru
Russian Federation, Petergof, St. Petersburg, 198504
N. V. Goncharov
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 194223
V. A. Kuznetsov
Research Institute of Hygiene, Occupational Pathology and Human Ecology
Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 188663
References
- Oon M.B., Nik Ab Rahman N.H., Mohd Noor N., Yazid M.B. 2024. Patient-controlled analgesia morphine for the management of acute pain in the emergency department: A systematic review and meta-analysis. Int. J. Emerg. Med. 17 (1), 37. https://doi.org/10.1186/s12245-024-00615-3
- Varga B.R., Streicher J.M., Majumdar S. 2023. Strategies towards safer opioid analgesics – A review of old and upcoming targets. Br. J. Pharmacol. 180 (7), 975–993. https://doi.org/10.1111/bph.15760
- Кузьмина Н.Е., Кузьмин В.С. 2011. Развитие представлений о взаимодействии лекарственных веществ с опиатными рецепторами. Успехи химии. 80 (2), 157–181.
- Bagley J.R., Thomas S.A., Rudo F.G., Spencer H.K., Doorley B.M., Ossipov M.H., Jerussi T.P., Benvenga M.J., Spaulding T. 1991. New 1-(heterocyclylalkyl)-4-(propionanilido)-4-piperidinyl methyl ester and methylene methyl ether analgesics. J. Med. Chem. 34 (2), 827–841. https://doi.org/10.1021/jm00106a051
- Vardanyan R.S., Hruby V.J. 2014. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med. Chem. 6 (4), 385–412. https://doi.org/10.4155/fmc.13.215
- Kelly E., Sutcliffe K., Cavallo D., Ramos-Gonzalez N., Alhosan N., Henderson G. 2023. The anomalous pharmacology of fentanyl. Br. J. Pharmacol. 180 (7), 797–812. https://doi.org/10.1111/bph.15573
- Volpe D.A., McMahon Tobin G.A., Mellon R.D., Katki A.G., Parker R.J., Colatsky T., Kropp T.J., Verbois S.L. 2011. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol. 59 (3), 385–390. https://doi.org/10.1016/j.yrtph.2010.12.007.
- Уйба В.В., Криворотов Денис Викторович, Забелин М.В., Радилов А.С., Рембовский В.Р., Дулов С.А., Кузнецов В.А., Ерофеев Г.Г., Мартинович Н.В., Соснов А.В. 2018. Антагонисты опиоидных рецепторов. От настоящего к будущему. Медицина экстремальных ситуаций. 20 (3), 356–370.
- Соснов А.В., Семченко Ф.М., Тохмахчи В.Н., Соснова А.А., Власов М.И., Радилов А.С., Криворотов Д.В. 2018. Критерии выбора соединений для разработки сильнодействующих анальгетиков и других лекарств центрального действия. Разработка и регистрация лекарственных средств. 3 (24), 114–128.
- Waldhoer M., Bartlett S.E., Whistler J.L. 2004. Opioid receptors. Annu. Rev. Biochem. 73, 953–990. https://doi.org/10.1146/annurev.biochem.73.011303.073940
- Adler T.K. 1963. Comparative potencies of codeine and its demethylated metabolites after intraventricular injection in the mouse. J. Pharmacol. Exp. Ther. 140, 155–161.
- Raynor K., Kong H., Chen Y., Yasuda K., Yu L., Bell G.I., Reisine T. 1994. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol. Pharmacol. 45 (2), 330–334.
- Varghese V., Hudlicky T. 2014. A short history of the discovery and development of naltrexone and other morphine derivatives. In: Natural Products in Medicinal Chemistry. Ed Hanessian S. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA, p. 225–250. https://doi.org/10.1002/9783527676545.ch06
- Codd E.E., Shank R.P., Schupsky J.J., Raffa R.B. 1995. Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J. Pharmacol. Exp. Ther. 274 (3), 1263–1270.
- Toll L., Berzetei-Gurske I.P., Polgar W.E., Brandt S.R., Adapa I.D., Rodriguez L., Schwartz R.W., Haggart D., O'Brien A., White A., Kennedy J.M., Craymer K., Farrington L., Auh J.S. 1998. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monogr. 178, 440–466.
- Clark S.D., Abi-Dargham A. 2019. The role of dynorphin and the kappa opioid receptor in the symptomatology of schizophrenia: A review of the evidence. Biol. Psychiatry. 86 (7), 502–511. https://doi.org/10.1016/j.biopsych.2019.05.012
- Криворотов Д.В., Кочура Д.М., Дулов С.А., Радилов А.С. 2022. Экспериментальное сравнение липофильности антагонистов опиоидов. Токс. Вестн. 30 (3), 149–157. https://doi.org/10.47470/0869-7922-2022-30-3-149-157
- Waterhouse R.N. 2003. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imaging Biol. 5 (6), 376–389. https://doi.org/10.1016/j.mibio.2003.09.014
- Noha S.M., Schmidhammer H., Spetea M. 2017. Molecular docking, molecular dynamics, and structure-activity relationship explorations of 14-Oxygenated N-methylmorphinan-6-ones as potent μ-opioid receptor agonists. ACS Chem. Neurosci. 8 (6), 1327–1337. https://doi.org/10.1021/acschemneuro.6b00460
- Wu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E., Liu W., Thompson A.A., Huang X.P., Carroll F.I., Mascarella S.W., Westkaemper R.B., Mosier P.D., Roth B.L., Cherezov V., Stevens R.C. 2012. Structure of the human ϰ-opioid receptor in complex with JDTic. Nature. 485 (7398), 327–332. https://doi.org/10.1038/nature10939
- Granier S., Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Weis W.I., Kobilka B.K. 2012. Structure of the δ-opioid receptor bound to naltrindole. Nature. 485 (7398), 400–404. https://doi.org/10.1038/nature11111
- Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S. 2012. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature. 485 (7398), 321–326. https://doi.org/10.1038/nature10954
- Froimowitz M. 1993. HyperChem: A software package for computational chemistry and molecular modeling. Biotechniques. 14 (6), 1010–1013.
- Bye E. 1976. The crystal structure of morphine hydrate. Acta Chem. Scand. 30 (6), 549–554. https://doi.org/10.3891/acta.chem.scand.30b-0549
- Gelbrich T., Braun D.E., Griesser U.J. 2012. Morphine hydro-chloride anhydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 68 (Pt 12), o3358–3359. https://doi.org/10.1107/S1600536812046405
- Canfield D.V., Barrick J., Giessen B.C. 1987. Structure of codeine. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 43 (5), 977–979. https://doi.org/10.1107/S0108270187093363
- Braun D.E., Gelbrich T., Kahlenberg V., Griesser U.J. 2014. Insights into hydrate formation and stability of morphinanes from a combination of experimental and computational approaches. Mol. Pharm. 11 (9), 3145–3163. https://doi.org/10.1021/mp500334z
- Ortiz-de León C., Hartwick C.J., Stuedemann C.A., Brogden N.K., MacGillivray L.R. 2022. Mechanochemistry facilitates a single-crystal X-ray structure determination of free base naloxone anhydrate. Cryst. Growth Des. 22 (11), 6622–6626. https://doi.org/10.1021/acs.cgd.2c00831
- Klein C.L., Majeste R.J., Stevens E.D. 1987. Experimental electron density distribution of naloxone hydrochloride dihydrate, a potent opiate antagonist. J. Am. Chem. Soc. 109 (22), 6675–6681. https://doi.org/10.1021/ja00256a021
- Scheins S., Messerschmidt M., Morgenroth W., Paulmann C., Luger P. 2007. Electron density analyses of opioids: A comparative study. J. Phys. Chem. A. 111 (25), 5499–5508. https://doi.org/10.1021/jp0709252.
- Steinberg B.D., Harris E.T., Foxman B.M., Oliveira M.A., Hickey M.B. 2018. New look at naltrexone hydrochloride hydrates: Understanding phase behavior and characterization of two dihydrate polymorphs. Cryst. Growth Des. 18 (6), 3502–3509. https://doi.org/10.1021/acs.cgd.8b00262
- Zhuang Y., Wang Y., He B., He X., Zhou X.E., Guo S., Rao Q., Yang J., Liu J., Zhou Q., Wang X., Liu M., Liu W., Jiang X., Yang D., Jiang H., Shen J., Melcher K., Chen H., Jiang Y., Cheng X., Wang M.W., Xie X., Xu H.E. 2022. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 185 (23), 4361–4375.e19. https://doi.org/10.1016/j.cell.2022.09.041
- Claff T., Yu J., Blais V., Patel N., Martin C., Wu L., Han G.W., Holleran B.J., Van der Poorten O., White K.L., Hanson M.A., Sarret P., Gendron L., Cherezov V., Katritch V., Ballet S., Liu Z.J., Müller C.E., Stevens R.C. 2019. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 5 (11), eaax9115. https://doi.org/10.1126/sciadv.aax9115
- Wang Y., Zhuang Y., DiBerto J.F., Zhou X.E., Schmitz G.P., Yuan Q., Jain M.K., Liu W., Melcher K., Jiang Y., Roth B.L., Xu H.E. 2023. Structures of the entire human opioid receptor family. Cell, 186 (2), 413–427.e17. https://doi.org/10.1016/j.cell.2022.12.026
- Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
- Sheldrick G.M. 2015. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71 (Pt 1), 3–8. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. 2015. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71 (Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. 2009. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341. https://doi.org/10.1107/S0021889808042726
- Grosdidier A., Zoete V., Michielin O. 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucl. Acids Res. 39, W270–W277. https://doi.org/10.1093/nar/gkr366.
- Belinskaia D.A., Voronina P.A., Krivorotov D.V., Jenkins R.O., Goncharov N.V. 2023. Anticholinesterase and serotoninergic evaluation of benzimidazole-carboxamides as potential multifunctional agents for the treatment of Alzheimer's disease. Pharmaceutics. 15 (8), 2159. https://doi.org/10.3390/pharmaceutics15082159
- Криворотов Д.В., Николаев А.И., Радилов А.С., Рембовский В.Р., Кузнецов В.А. 2025. Физико-химические критерии оценки опасности ЦНС-активных ксенобиотиков. Медицина экстремальных ситуаций. 27 (1), 15–25. https://doi.org/10.47183/mes.2025-265
- Belinskaia D.A., Savelieva E.I., Karakashev G.V., Orlova O.I., Leninskii M.A., Khlebnikova N.S., Shestakova N.N., Kiskina A.R. 2021. Investigation of bemethyl biotransformation pathways by combination of LC-MS/HRMS and in silico methods. Int. J. Mol. Sci. 22 (16), 9021. https://doi.org/10.3390/ijms22169021
- Rundlett Beyer J., Elliott H.W. 1976. A comparative study of the analgesic and respiratory effects of N-allylnorcodeine (nalodeine), nalorphine, codeine and morphine. J. Pharmacol. Exp. Ther. 198 (2), 330–339.
- Jasinski D.R., Martin W.R., Haertzen C.A. 1967. The human pharmacology and abuse potential of N-allylnoroxymorphone (naloxone). J. Pharmacol. Exp. Ther. 157 (2), 420–426.
- Land B.B., Bruchas M.R., Lemos J.C., Xu M., Melief E.J., Chavkin C. 2008. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J. Neurosci. 28 (2), 407–414. https://doi.org/10.1523/JNEUROSCI.4458-07.2008
- Bart G., Schluger J.H., Borg L., Ho A., Bidlack J.M., Kreek M.J. 2005. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology. 30 (12), 2254–2262. https://doi.org/10.1038/sj.npp.1300811
Supplementary files
