In silico evaluation of the effect of geometrical configuration and charge of opioid antagonists on their binding to opioid receptors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the geometric configuration and charge of molecules of opioid receptor (OR) agonists and antagonists on binding to mu-, delta-, and kappa-opioid receptors was studied using the molecular docking method. For the docking procedure, we used the three-dimensional structures of the ligands obtained by X-ray diffraction analysis and available in the Cambridge Crystallographic Data Centre (CCDC), as well as their three-dimensional models built in a molecular editor. The three-dimensional crystal structure of nalmefene, which is absent from the CCDC database, was obtained for the first time in the presented study by X-ray diffraction analysis. Protonated and deprotonated forms of the ligands were tested. The results of the study using the example of morphine, codeine, naloxone, naltrexone, and nalmefene showed that the method of obtaining three-dimensional geometric structures of OR ligands has no effect on the calculated values of the free energy of binding ΔG, which indicates the possibility of using ligand models constructed in silico in computational experiments. The protonation state of the ligand molecule, on the contrary, has a significant effect on the free energy of binding to OR, which can affect the properties of this group of drugs when pH values in the body change. When considering the peculiarities of binding of opioid enantiomers into the ligand-binding center of mu-opioid receptors using the example of morphine, it was shown that (–)-morphine and (+)-morphine share a common site for the cationic group, and not for the phenolic hydroxyl, as was previously assumed. At the same time, studies have shown that molecular docking only partially allows describing the pharmacological action of analgesics and their antagonists. For some substances, such as codeine and synthetic (+)-morphine, in silico experiments there was an overestimation of the effectiveness of the interaction of the drug with the OR, which requires continued improvement of the corresponding calculation methods and models.

Full Text

Restricted Access

About the authors

D. V. Krivorotov

Research Institute of Hygiene, Occupational Pathology and Human Ecology

Author for correspondence.
Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 188663

D. A. Belinskaia

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 194223

A. S. Smirnov

St.-Petersburg State University

Email: denis.krivorotov@bk.ru
Russian Federation, Petergof, St. Petersburg, 198504

V. V. Suslonov

St.-Petersburg State University

Email: denis.krivorotov@bk.ru
Russian Federation, Petergof, St. Petersburg, 198504

N. V. Goncharov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 194223

V. A. Kuznetsov

Research Institute of Hygiene, Occupational Pathology and Human Ecology

Email: denis.krivorotov@bk.ru
Russian Federation, St. Petersburg, 188663

References

  1. Oon M.B., Nik Ab Rahman N.H., Mohd Noor N., Yazid M.B. 2024. Patient-controlled analgesia morphine for the management of acute pain in the emergency department: A systematic review and meta-analysis. Int. J. Emerg. Med. 17 (1), 37. https://doi.org/10.1186/s12245-024-00615-3
  2. Varga B.R., Streicher J.M., Majumdar S. 2023. Strategies towards safer opioid analgesics – A review of old and upcoming targets. Br. J. Pharmacol. 180 (7), 975–993. https://doi.org/10.1111/bph.15760
  3. Кузьмина Н.Е., Кузьмин В.С. 2011. Развитие представлений о взаимодействии лекарственных веществ с опиатными рецепторами. Успехи химии. 80 (2), 157–181.
  4. Bagley J.R., Thomas S.A., Rudo F.G., Spencer H.K., Doorley B.M., Ossipov M.H., Jerussi T.P., Benvenga M.J., Spaulding T. 1991. New 1-(heterocyclylalkyl)-4-(propionanilido)-4-piperidinyl methyl ester and methylene methyl ether analgesics. J. Med. Chem. 34 (2), 827–841. https://doi.org/10.1021/jm00106a051
  5. Vardanyan R.S., Hruby V.J. 2014. Fentanyl-related compounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med. Chem. 6 (4), 385–412. https://doi.org/10.4155/fmc.13.215
  6. Kelly E., Sutcliffe K., Cavallo D., Ramos-Gonzalez N., Alhosan N., Henderson G. 2023. The anomalous pharmacology of fentanyl. Br. J. Pharmacol. 180 (7), 797–812. https://doi.org/10.1111/bph.15573
  7. Volpe D.A., McMahon Tobin G.A., Mellon R.D., Katki A.G., Parker R.J., Colatsky T., Kropp T.J., Verbois S.L. 2011. Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol. 59 (3), 385–390. https://doi.org/10.1016/j.yrtph.2010.12.007.
  8. Уйба В.В., Криворотов Денис Викторович, Забелин М.В., Радилов А.С., Рембовский В.Р., Дулов С.А., Кузнецов В.А., Ерофеев Г.Г., Мартинович Н.В., Соснов А.В. 2018. Антагонисты опиоидных рецепторов. От настоящего к будущему. Медицина экстремальных ситуаций. 20 (3), 356–370.
  9. Соснов А.В., Семченко Ф.М., Тохмахчи В.Н., Соснова А.А., Власов М.И., Радилов А.С., Криворотов Д.В. 2018. Критерии выбора соединений для разработки сильнодействующих анальгетиков и других лекарств центрального действия. Разработка и регистрация лекарственных средств. 3 (24), 114–128.
  10. Waldhoer M., Bartlett S.E., Whistler J.L. 2004. Opioid receptors. Annu. Rev. Biochem. 73, 953–990. https://doi.org/10.1146/annurev.biochem.73.011303.073940
  11. Adler T.K. 1963. Comparative potencies of codeine and its demethylated metabolites after intraventricular injection in the mouse. J. Pharmacol. Exp. Ther. 140, 155–161.
  12. Raynor K., Kong H., Chen Y., Yasuda K., Yu L., Bell G.I., Reisine T. 1994. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol. Pharmacol. 45 (2), 330–334.
  13. Varghese V., Hudlicky T. 2014. A short history of the discovery and development of naltrexone and other morphine derivatives. In: Natural Products in Medicinal Chemistry. Ed Hanessian S. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA, p. 225–250. https://doi.org/10.1002/9783527676545.ch06
  14. Codd E.E., Shank R.P., Schupsky J.J., Raffa R.B. 1995. Serotonin and norepinephrine uptake inhibiting activity of centrally acting analgesics: structural determinants and role in antinociception. J. Pharmacol. Exp. Ther. 274 (3), 1263–1270.
  15. Toll L., Berzetei-Gurske I.P., Polgar W.E., Brandt S.R., Adapa I.D., Rodriguez L., Schwartz R.W., Haggart D., O'Brien A., White A., Kennedy J.M., Craymer K., Farrington L., Auh J.S. 1998. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monogr. 178, 440–466.
  16. Clark S.D., Abi-Dargham A. 2019. The role of dynorphin and the kappa opioid receptor in the symptomatology of schizophrenia: A review of the evidence. Biol. Psychiatry. 86 (7), 502–511. https://doi.org/10.1016/j.biopsych.2019.05.012
  17. Криворотов Д.В., Кочура Д.М., Дулов С.А., Радилов А.С. 2022. Экспериментальное сравнение липофильности антагонистов опиоидов. Токс. Вестн. 30 (3), 149–157. https://doi.org/10.47470/0869-7922-2022-30-3-149-157
  18. Waterhouse R.N. 2003. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol. Imaging Biol. 5 (6), 376–389. https://doi.org/10.1016/j.mibio.2003.09.014
  19. Noha S.M., Schmidhammer H., Spetea M. 2017. Molecular docking, molecular dynamics, and structure-activity relationship explorations of 14-Oxygenated N-methylmorphinan-6-ones as potent μ-opioid receptor agonists. ACS Chem. Neurosci. 8 (6), 1327–1337. https://doi.org/10.1021/acschemneuro.6b00460
  20. Wu H., Wacker D., Mileni M., Katritch V., Han G.W., Vardy E., Liu W., Thompson A.A., Huang X.P., Carroll F.I., Mascarella S.W., Westkaemper R.B., Mosier P.D., Roth B.L., Cherezov V., Stevens R.C. 2012. Structure of the human ϰ-opioid receptor in complex with JDTic. Nature. 485 (7398), 327–332. https://doi.org/10.1038/nature10939
  21. Granier S., Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Weis W.I., Kobilka B.K. 2012. Structure of the δ-opioid receptor bound to naltrindole. Nature. 485 (7398), 400–404. https://doi.org/10.1038/nature11111
  22. Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S. 2012. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature. 485 (7398), 321–326. https://doi.org/10.1038/nature10954
  23. Froimowitz M. 1993. HyperChem: A software package for computational chemistry and molecular modeling. Biotechniques. 14 (6), 1010–1013.
  24. Bye E. 1976. The crystal structure of morphine hydrate. Acta Chem. Scand. 30 (6), 549–554. https://doi.org/10.3891/acta.chem.scand.30b-0549
  25. Gelbrich T., Braun D.E., Griesser U.J. 2012. Morphine hydro-chloride anhydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 68 (Pt 12), o3358–3359. https://doi.org/10.1107/S1600536812046405
  26. Canfield D.V., Barrick J., Giessen B.C. 1987. Structure of codeine. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 43 (5), 977–979. https://doi.org/10.1107/S0108270187093363
  27. Braun D.E., Gelbrich T., Kahlenberg V., Griesser U.J. 2014. Insights into hydrate formation and stability of morphinanes from a combination of experimental and computational approaches. Mol. Pharm. 11 (9), 3145–3163. https://doi.org/10.1021/mp500334z
  28. Ortiz-de León C., Hartwick C.J., Stuedemann C.A., Brogden N.K., MacGillivray L.R. 2022. Mechanochemistry facilitates a single-crystal X-ray structure determination of free base naloxone anhydrate. Cryst. Growth Des. 22 (11), 6622–6626. https://doi.org/10.1021/acs.cgd.2c00831
  29. Klein C.L., Majeste R.J., Stevens E.D. 1987. Experimental electron density distribution of naloxone hydrochloride dihydrate, a potent opiate antagonist. J. Am. Chem. Soc. 109 (22), 6675–6681. https://doi.org/10.1021/ja00256a021
  30. Scheins S., Messerschmidt M., Morgenroth W., Paulmann C., Luger P. 2007. Electron density analyses of opioids: A comparative study. J. Phys. Chem. A. 111 (25), 5499–5508. https://doi.org/10.1021/jp0709252.
  31. Steinberg B.D., Harris E.T., Foxman B.M., Oliveira M.A., Hickey M.B. 2018. New look at naltrexone hydrochloride hydrates: Understanding phase behavior and characterization of two dihydrate polymorphs. Cryst. Growth Des. 18 (6), 3502–3509. https://doi.org/10.1021/acs.cgd.8b00262
  32. Zhuang Y., Wang Y., He B., He X., Zhou X.E., Guo S., Rao Q., Yang J., Liu J., Zhou Q., Wang X., Liu M., Liu W., Jiang X., Yang D., Jiang H., Shen J., Melcher K., Chen H., Jiang Y., Cheng X., Wang M.W., Xie X., Xu H.E. 2022. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 185 (23), 4361–4375.e19. https://doi.org/10.1016/j.cell.2022.09.041
  33. Claff T., Yu J., Blais V., Patel N., Martin C., Wu L., Han G.W., Holleran B.J., Van der Poorten O., White K.L., Hanson M.A., Sarret P., Gendron L., Cherezov V., Katritch V., Ballet S., Liu Z.J., Müller C.E., Stevens R.C. 2019. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 5 (11), eaax9115. https://doi.org/10.1126/sciadv.aax9115
  34. Wang Y., Zhuang Y., DiBerto J.F., Zhou X.E., Schmitz G.P., Yuan Q., Jain M.K., Liu W., Melcher K., Jiang Y., Roth B.L., Xu H.E. 2023. Structures of the entire human opioid receptor family. Cell, 186 (2), 413–427.e17. https://doi.org/10.1016/j.cell.2022.12.026
  35. Humphrey W., Dalke A., Schulten K. 1996. VMD: Visual molecular dynamics. J. Mol. Graph. 14 (1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  36. Sheldrick G.M. 2015. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71 (Pt 1), 3–8. https://doi.org/10.1107/S2053273314026370
  37. Sheldrick G.M. 2015. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71 (Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. 2009. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341. https://doi.org/10.1107/S0021889808042726
  39. Grosdidier A., Zoete V., Michielin O. 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucl. Acids Res. 39, W270–W277. https://doi.org/10.1093/nar/gkr366.
  40. Belinskaia D.A., Voronina P.A., Krivorotov D.V., Jenkins R.O., Goncharov N.V. 2023. Anticholinesterase and serotoninergic evaluation of benzimidazole-carboxamides as potential multifunctional agents for the treatment of Alzheimer's disease. Pharmaceutics. 15 (8), 2159. https://doi.org/10.3390/pharmaceutics15082159
  41. Криворотов Д.В., Николаев А.И., Радилов А.С., Рембовский В.Р., Кузнецов В.А. 2025. Физико-химические критерии оценки опасности ЦНС-активных ксенобиотиков. Медицина экстремальных ситуаций. 27 (1), 15–25. https://doi.org/10.47183/mes.2025-265
  42. Belinskaia D.A., Savelieva E.I., Karakashev G.V., Orlova O.I., Leninskii M.A., Khlebnikova N.S., Shestakova N.N., Kiskina A.R. 2021. Investigation of bemethyl biotransformation pathways by combination of LC-MS/HRMS and in silico methods. Int. J. Mol. Sci. 22 (16), 9021. https://doi.org/10.3390/ijms22169021
  43. Rundlett Beyer J., Elliott H.W. 1976. A comparative study of the analgesic and respiratory effects of N-allylnorcodeine (nalodeine), nalorphine, codeine and morphine. J. Pharmacol. Exp. Ther. 198 (2), 330–339.
  44. Jasinski D.R., Martin W.R., Haertzen C.A. 1967. The human pharmacology and abuse potential of N-allylnoroxymorphone (naloxone). J. Pharmacol. Exp. Ther. 157 (2), 420–426.
  45. Land B.B., Bruchas M.R., Lemos J.C., Xu M., Melief E.J., Chavkin C. 2008. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J. Neurosci. 28 (2), 407–414. https://doi.org/10.1523/JNEUROSCI.4458-07.2008
  46. Bart G., Schluger J.H., Borg L., Ho A., Bidlack J.M., Kreek M.J. 2005. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology. 30 (12), 2254–2262. https://doi.org/10.1038/sj.npp.1300811

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometric configuration of nalmefene according to X-ray diffraction data. a – Structure of nalmefene hydrochloride according to X-ray diffraction data. b – Structure of unprotonated nalmefene according to X-ray diffraction data.

Download (205KB)
3. Fig. 2. Interaction of morphine stereoisomers with MOR. a – Conformation of the complex of (–)-morphine with MOR according to electron microscopy data [32]. b – Interaction of optimized deprotonated (–)-morphine with MOR according to molecular docking data. c – Interaction of optimized protonated (–)-morphine with MOR according to molecular docking data. d – Interaction of optimized (green) and crystalline (purple) protonated (–)-morphine with MOR according to molecular docking data. d – Interaction of optimized (+)-morphine with MOR and according to molecular docking data. In the structures obtained by the docking method, the carbon atoms of (–)- and (+)-morphine are highlighted in green or purple, in the structure obtained by electron microscopy, the carbon atoms of (–)-morphine are highlighted in pink. In the experimental structure of the (–)-morphine complex with MOR, hydrogen atoms are absent due to limitations of the method. In the structures obtained by the docking method, minor hydrogen atoms are not shown for clarity of the figure.

Download (685KB)
4. Fig. 3. Proposed models of the interaction of morphine enantiomers with sites of the μ-opioid receptor. a – Model in which (–)-morphine and (+)-morphine share a common site for the phenolic hydroxyl [13], b – model in which (–)-morphine and (+)-morphine share a common site for the cationic group.

Download (388KB)
5. Fig. 4. Comparative analysis of the interaction of protonated forms of (–)-morphine, (–)-codeine, and (–)-naloxone with MOR according to molecular docking data. a – Conformation of MOR complexes with (–)-morphine (green) and (–)-codeine (purple). b – Conformation of MOR complexes with (–)-morphine (green) and (–)-naloxone (orange). Minor hydrogen atoms are not shown for clarity of the figure.

Download (336KB)
6. Fig. 5. Interaction of the protonated form of (–)-morphine with DOR according to molecular docking data. a – Conformation of the (–)-morphine complex with DOR. b – Superposition of the (–)-morphine complexes with MOR and DOR obtained by the molecular docking method. In the (–)-morphine-DOR complex, the carbon atoms of the ligand are highlighted in brown, in the (–)-morphine-MOR complex – in green. In Figure b, the DOR backbone is marked with a gray ribbon, the MOR backbone – with a green ribbon. Minor hydrogen atoms are not shown for clarity of the figure.

Download (307KB)
7. Fig. 6. Proposed scheme of interaction of protonated forms of morphine enantiomers with δ-opioid receptor sites.

Download (185KB)
8. Fig. 7. Interaction of the protonated form of (–)-morphine with KOR according to molecular docking data. a – Conformation of the (–)-morphine complex with KOR. b – Superposition of the (–)-morphine complexes with MOR and KOR obtained by the molecular docking method. In the (–)-morphine-KOR complex, the carbon atoms of the ligand are highlighted in yellow, in the (–)-morphine-MOR complex – in green. In Figure b, the KOR backbone is marked with a yellow ribbon, the MOR backbone – with a green ribbon. Minor hydrogen atoms are not shown for clarity of the figure.

Download (331KB)

Copyright (c) 2025 The Russian Academy of Sciences