Lipid-mediated effect of glycyrrhizin on the properties of the transmembrane domain of the E-protein of the SARS-CoV-2 virus

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The interaction of glycyrrhizin with the transmembrane domain of the E-protein of the SARS-CoV-2 virus (E-protein Trans-Membrane domain, ETM) in a homogeneous aqueous solution and in a model lipid membrane was studied using the selective nuclear Overhauser effect (selective NOESY) and NMR relaxation methods. The selective NOESY showed the presence of the interaction of glycyrrhizin with ETM in an aqueous solution, which is consistent with the literature modeling data, which indicate the possibility of penetration of the glycyrrhizin molecule into the channel formed by the ETM molecules. However, this conclusion is not confirmed by NOESY experiments in model lipid membranes, DMPC/DHPC bicelles. At the same time, the NMR relaxation method revealed the effect of glycyrrhizin on the mobility of both lipids and ETM molecules in bicelles. This suggests that GA affects the activity of the coronavirus E-protein indirectly through lipids.

Texto integral

Acesso é fechado

Sobre autores

P. Kononova

Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: olga.gluschenko@gmail.com
Rússia, Novosibirsk; Novosibirsk

O. Selyutina

Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Siberian Branch of the Russian Academy of Sciences; Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: olga.gluschenko@gmail.com
Rússia, Novosibirsk; Novosibirsk

N. Polyakov

Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Siberian Branch of the Russian Academy of Sciences; Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences

Email: olga.gluschenko@gmail.com
Rússia, Novosibirsk; Novosibirsk

Bibliografia

  1. Baglivo M., Baronio M., Natalini G. et al. // Acta Biomed. 2020. V. 91. № 1. P. 161.
  2. Tang T., Bidon M., Jaimes J.A., Whittaker G.R., Daniel S. // Antiviral Res. 2020. V. 178. P. 104792.
  3. Venkatagopalan P., Daskalova S.M., Lopez L.A., Dolezal K.A., Hogue B.G. // Virology. 2015. V. 478. P. 75.
  4. Schoeman D., Fielding B.C. // Virol. J. 2019. V. 16. № 1. P. 69.
  5. Mehregan A., Perez-Conesa S., Zhuang Y. et al. // Biochim. Biophys. Acta-Biomembr. 2022. V. 1864. № 10. P. 183994.
  6. Wilson L., Gage P., Ewart G. // Virology. 2006. V. 353. № 2. P. 294.
  7. Gupta M.K., Vemula S., Donde R. et al. // J. Biomol. Struct. Dyn. 2021. V. 39. № 7. P. 2617.
  8. Pervushin K., Tan E., Parthasarathy K. et al. // PLOS Pathog. 2009. V. 5. № 7. P. e1000511.
  9. Chernyshev A. Pre-print. 2020. https://doi.org/10.26434/chemrxiv.12286421.v110.
  10. G.A. Tolstikov, L.A. Baltina, V.P. Grankina et al. Novosibirsk. Geo Publishing (2007) (in russian).
  11. Shibata S. // Yakugaku Zasshi. 2000. V. 120. № 10. P. 849.
  12. Selyutina O.Y., Polyakov N.E. // Inten. J. Pharm. 2019. V. 559. P. 271.
  13. Fiore C., Eisenhut M., Krausse R. et al. // Phytother. Res. 2008. V. 22. № 2. P. 141.
  14. Sun Z.G., Zhao T.T., Lu N., Yang Y.A., Zhu H.L. // Mini Rev. Med. Chem. 2019. V. 19. № 10. P. 826.
  15. Pompei R., Pani A., Flore O., Marcialis M.A., Loddo B. // Experentia. 1980. V. 36. № 3. P. 304.
  16. Hoever G., Baltina L., Michaelis M. et al. // J. Med. Chem. 2005. V. 48. № 4. P. 1256.
  17. Chrzanowski J., Chrzanowska A., Graboń W. // Phyther. Res. 2021. V. 35. № 2. P. 629.
  18. Bailly C., Vergoten G. // Pharmacol. Ther. 2020. V. 214. P. 107618.
  19. Fomenko V.V., Rudometova N.B., Yarovaya O.I. et al. // Molecules. 2022. V. 27. № 1. P. 295.
  20. Kang H., Lieberman P.M. // J. Virol. 2011. V. 85. № 21. P. 11159.
  21. Sekizawa T., Yanagi K., Itoyama Y. // Acta Virol. 2001. P. 51.
  22. Baba M., Shigeta S. // Antiviral Res. 1987. V. 7. № 2. P. 99.
  23. Lin J.C. // Ibid. 2003. V. 59. № 1. P. 41.
  24. Duan E., Wang D., Fang L. et al. // Ibid. 2015. V. 120. P. 122.
  25. Harada S. // Biochem. J. 2005. V. 392. P. 191.
  26. Crance J.M., Leveque F., Biziagos E. et al. // Antiviral Res. 1994. V. 23. № 1. P. 63.
  27. Sui X., Yin J., Ren X. // Ibid. 2010. V. 85. № 2. P. 346.
  28. Wolkerstorfer A., Kurz H., Bachhofner N., Szolar O.H.J. // Ibid. 2009. V. 83. № 2. P. 171.
  29. Matsumoto Y., Matsuura T., Aoyagi H. et al. // PLoS One. 2013. V. 8. № 7. P. e68992.
  30. Selyutina O.Y., Shelepova E.A., Paramonova E.D. et al. // Arch. Biochem. Biophys. 2020. V. 686. P. 108368.
  31. Selyutina O.Y., Apanasenko I.E., Kim A.V. et al. // Coll. Surf. B. Biointerfaces. 2016. V. 147. P. 459.
  32. Selyutina O.Y., Apanasenko I.E., Polyakov N.E. // Russ. Chem. Bull. 2015. V. 64. № 7. P. 1555.
  33. Ellena J.F., Lepore L.S., Cafi so D.S. // J. Phys. Chem. 1993. V. 97. № 12. P. 2952.
  34. Lepore L.S., Ellena J.F., Cafi so D.S. // Biophys. J. 1992. V. 61. № 3. P. 767.34.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural formula of glycyrrhizin. The asterisk indicates the proton that was excited in the sNOESY experiments.

Baixar (59KB)
3. Fig. 2. Fragments of 1H-NMR spectra for samples containing 1 mM ETM (1), 1 mM HA and 1 mM ETM (2), and sNOESY for a sample containing 1 mM HA and 1 mM ETM (3) in D2O; pH 3.5.

Baixar (93KB)
4. Fig. 3. Fragments of 1H-NMR spectra (1) and sNOESY (2) for a sample containing 1 mM HA in DMPC/DHPC bicelles; pH 3.5.

Baixar (70KB)
5. Fig. 4. Fragments of 1H-NMR spectra (1) and sNOESY (2) for a sample containing 0.5 mM ETM in DMPC/DHPC bicelles; pH 3.5.

Baixar (81KB)
6. Fig. 5. Fragments of the 1H-NMR spectra (1) and sNOESY (2, 3) for samples containing 1 mM HA (1, 2) and 1 mM HA + + 0.5 mM ETM (3) in DMPC/DHPC bicelles; pH 3.5.

Baixar (84KB)

Nota

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Declaração de direitos autorais © Russian Academy of Sciences, 2024